1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
// Copyright 2019 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/

use crate::{
    iolib::{IoContext, StreamToken},
    throttling::THROTTLING_SERVICE,
    Error,
};
use bytes::{Bytes, BytesMut};
use lazy_static::lazy_static;
use log::{debug, trace};
use metrics::{
    register_meter_with_group, Gauge, GaugeUsize, Histogram, Meter, Sample,
};
use mio::{tcp::*, *};
use priority_send_queue::{PrioritySendQueue, SendQueuePriority};
use serde::Deserialize;
use serde_derive::Serialize;
use std::{
    io::{self, Read, Write},
    net::SocketAddr,
    sync::{
        atomic::{AtomicBool, Ordering as AtomicOrdering},
        Arc,
    },
    time::Instant,
};

lazy_static! {
    static ref READ_METER: Arc<dyn Meter> =
        register_meter_with_group("network_system_data", "read");
    static ref WRITE_METER: Arc<dyn Meter> =
        register_meter_with_group("network_system_data", "write");
    static ref SEND_METER: Arc<dyn Meter> =
        register_meter_with_group("network_system_data", "send");
    static ref SEND_LOW_PRIORITY_METER: Arc<dyn Meter> =
        register_meter_with_group("network_system_data", "send_low");
    static ref SEND_NORMAL_PRIORITY_METER: Arc<dyn Meter> =
        register_meter_with_group("network_system_data", "send_normal");
    static ref SEND_HIGH_PRIORITY_METER: Arc<dyn Meter> =
        register_meter_with_group("network_system_data", "send_high");
    static ref HIGH_PACKET_SEND_TO_WRITE_ELAPSED_TIME: Arc<dyn Histogram> =
        Sample::ExpDecay(0.015).register_with_group(
            "network_system_data",
            "high_packet_wait_time",
            1024
        );
    static ref LOW_PACKET_SEND_TO_WRITE_ELAPSED_TIME: Arc<dyn Histogram> =
        Sample::ExpDecay(0.015).register_with_group(
            "network_system_data",
            "low_packet_wait_time",
            1024
        );
    static ref WRITABLE_COUNTER: Arc<dyn Meter> =
        register_meter_with_group("network_system_data", "writable_counter");
    static ref WRITABLE_YIELD_SEND_RIGHT_COUNTER: Arc<dyn Meter> =
        register_meter_with_group(
            "network_system_data",
            "writable_yield_send_right_counter"
        );
    static ref WRITABLE_ZERO_COUNTER: Arc<dyn Meter> =
        register_meter_with_group(
            "network_system_data",
            "writable_zero_counter"
        );
    static ref WRITABLE_PACKET_COUNTER: Arc<dyn Meter> =
        register_meter_with_group(
            "network_system_data",
            "writable_packet_counter"
        );
    static ref NETWORK_SEND_QUEUE_SIZE: Arc<dyn Gauge<usize>> =
        GaugeUsize::register_with_group(
            "network_system_data",
            "send_queue_size"
        );
}

/// Connection write status.
#[derive(Debug, PartialEq, Eq)]
pub enum WriteStatus {
    /// Some data is still pending for current packet.
    Ongoing,
    /// All data sent.
    Complete,
}

const MAX_PAYLOAD_SIZE: usize = (1 << 24) - 1;

pub trait GenericSocket: Read + Write {}

impl GenericSocket for TcpStream {}

/// Trait to assemble/load packet with extra information.
/// E.g. prefix packet with length information
pub trait PacketAssembler: Send + Sync {
    /// Check if the specified packet `len` is oversized.
    fn is_oversized(&self, len: usize) -> bool;

    /// Assemble packet with extra information.
    fn assemble(&self, data: &mut Vec<u8>) -> Result<(), Error>;

    /// Load packet and remove the extra information from the specified buffer.
    fn load(&self, buf: &mut BytesMut) -> Option<BytesMut>;
}

/// Packet with guard to automatically update throttling and high priority
/// packets counter.

struct Packet {
    // data to write to socket
    data: Vec<u8>,
    // current data position to write to socket.
    sending_pos: usize,
    original_is_high_priority: bool,
    throttling_size: usize,
    creation_time: Instant,
}

impl Packet {
    fn new(data: Vec<u8>, priority: SendQueuePriority) -> Result<Self, Error> {
        // update throttling
        let throttling_size = data.len();
        THROTTLING_SERVICE
            .write()
            .on_enqueue(throttling_size, priority == SendQueuePriority::High)?;

        let is_high_priority = priority == SendQueuePriority::High;

        Ok(Packet {
            data,
            sending_pos: 0,
            original_is_high_priority: is_high_priority,
            throttling_size,
            creation_time: Instant::now(),
        })
    }

    fn write(&mut self, writer: &mut dyn Write) -> Result<usize, Error> {
        if self.is_send_completed() {
            return Ok(0);
        }

        let size = writer.write(&self.data[self.sending_pos..])?;
        self.sending_pos += size;
        Ok(size)
    }

    fn is_send_completed(&self) -> bool { self.sending_pos >= self.data.len() }
}

impl Drop for Packet {
    fn drop(&mut self) {
        THROTTLING_SERVICE
            .write()
            .on_dequeue(self.throttling_size, self.original_is_high_priority);

        if self.original_is_high_priority {
            HIGH_PACKET_SEND_TO_WRITE_ELAPSED_TIME
                .update_since(self.creation_time);
        } else {
            LOW_PACKET_SEND_TO_WRITE_ELAPSED_TIME
                .update_since(self.creation_time)
        }
    }
}

/// This information is to measure the congestion situation of network.
#[allow(dead_code)]
pub struct SendQueueStatus {
    queue_length: usize,
}

pub struct GenericConnection<Socket: GenericSocket> {
    /// Connection id (token)
    token: StreamToken,
    /// Network socket
    socket: Socket,
    /// Receive buffer
    recv_buf: BytesMut,
    /// Packets that waiting for sending out.
    send_queue: PrioritySendQueue<Packet>,
    /// Sending packet.
    sending_packet: Option<Packet>,
    /// Event flags this connection interested
    interest: Ready,
    /// Registered flag
    registered: AtomicBool,
    /// Assemble packet with extra information before sending out.
    assembler: Box<dyn PacketAssembler>,
}

impl<Socket: GenericSocket> GenericConnection<Socket> {
    /// Readable IO handler. Called when there is some data to be read.
    pub fn readable(&mut self) -> io::Result<Option<Bytes>> {
        let mut buf: [u8; 1024] = [0; 1024];

        // Read until the socket has no data to read.
        // This is to avoid accumulating too much data in kernal.
        //
        // In this way, N packets may be read at a time, and Readable IO event
        // will not be triggered again if no more data sent to socket. So, the
        // caller should guarantee to read all packets in a loop when Readable
        // IO event triggered.
        loop {
            match self.socket.read(&mut buf) {
                Ok(size) => {
                    trace!(
                        "Succeed to read socket data, token = {}, size = {}",
                        self.token,
                        size
                    );
                    READ_METER.mark(size);
                    if size == 0 {
                        break;
                    }
                    self.recv_buf.extend_from_slice(&buf[0..size]);
                }
                Err(e) => match e.kind() {
                    io::ErrorKind::Interrupted => continue,
                    io::ErrorKind::WouldBlock => break,
                    _ => {
                        debug!("Failed to read socket data, token = {}, err = {:?}", self.token, e);
                        return Err(e);
                    }
                },
            }
        }

        let packet = self.assembler.load(&mut self.recv_buf);

        if let Some(ref p) = packet {
            trace!(
                "Packet received, token = {}, size = {}",
                self.token,
                p.len()
            );
        }

        Ok(packet.map(|p| p.freeze()))
    }

    /// Send the specified data out immediately
    pub fn write_raw_data(
        &mut self, mut data: Vec<u8>,
    ) -> Result<usize, Error> {
        trace!(
            "Sending raw buffer, token = {} data_len = {}, data = {:?}",
            self.token,
            data.len(),
            data
        );

        self.assembler.assemble(&mut data)?;
        let size = self.socket.write(&data)?;

        trace!(
            "Succeed to send socket data, token = {}, size = {}",
            self.token,
            size
        );

        WRITE_METER.mark(size);
        Ok(size)
    }

    /// Continue to send out the uncompleted packet, or pop new packet from
    /// queue to send out.
    fn write_next_from_queue(&mut self) -> Result<WriteStatus, Error> {
        // In case of last packet is all sent out.
        if self.sending_packet.is_none() {
            // get packet from queue to send
            let (mut packet, _) = match self.send_queue.pop_front() {
                Some(item) => item,
                None => return Ok(WriteStatus::Complete),
            };

            // assemble packet to send, e.g. prefix length to packet
            self.assembler.assemble(&mut packet.data)?;

            trace!(
                "Packet ready for sent, token = {}, size = {}",
                self.token,
                packet.data.len()
            );

            self.sending_packet = Some(packet);
        }

        let packet = self
            .sending_packet
            .as_mut()
            .expect("should pop packet from send queue");

        let size = packet.write(&mut self.socket)?;
        if size == 0 {
            WRITABLE_ZERO_COUNTER.mark(1);
        }

        trace!(
            "Succeed to send socket data, token = {}, size = {}",
            self.token,
            size
        );

        WRITE_METER.mark(size);
        WRITABLE_COUNTER.mark(1);
        if packet.is_send_completed() {
            trace!("Packet sent, token = {}", self.token);
            self.sending_packet = None;

            WRITABLE_PACKET_COUNTER.mark(1);

            Ok(WriteStatus::Complete)
        } else {
            Ok(WriteStatus::Ongoing)
        }
    }

    /// Writable IO handler. Called when the socket is ready to send.
    pub fn writable<Message: Sync + Send + Clone + 'static>(
        &mut self, io: &IoContext<Message>,
    ) -> Result<WriteStatus, Error> {
        let status = self.write_next_from_queue()?;

        if self.sending_packet.is_none() && self.send_queue.is_empty() {
            self.interest.remove(Ready::writable());
        }
        NETWORK_SEND_QUEUE_SIZE.update(self.send_queue.len());
        io.update_registration(self.token)?;
        Ok(status)
    }

    /// Add a packet to send queue.
    pub fn send<Message: Sync + Send + Clone + 'static>(
        &mut self, io: &IoContext<Message>, data: Vec<u8>,
        priority: SendQueuePriority,
    ) -> Result<SendQueueStatus, Error> {
        if !data.is_empty() {
            let size = data.len();
            if self.assembler.is_oversized(size) {
                return Err(Error::OversizedPacket.into());
            }

            trace!("Sending packet, token = {}, size = {}", self.token, size);

            let packet = Packet::new(data, priority)?;
            self.send_queue.push_back(packet, priority);

            SEND_METER.mark(size);
            match priority {
                SendQueuePriority::High => {
                    SEND_HIGH_PRIORITY_METER.mark(size);
                }
                SendQueuePriority::Normal => {
                    SEND_NORMAL_PRIORITY_METER.mark(size);
                }
                SendQueuePriority::Low => {
                    SEND_LOW_PRIORITY_METER.mark(size);
                }
            }

            if !self.interest.is_writable() {
                self.interest.insert(Ready::writable());
            }
            io.update_registration(self.token).ok();
        }

        Ok(SendQueueStatus {
            queue_length: self.send_queue.len(),
        })
    }

    pub fn is_sending(&self) -> bool { self.interest.is_writable() }
}

pub type Connection = GenericConnection<TcpStream>;

impl Connection {
    pub fn new(token: StreamToken, socket: TcpStream) -> Self {
        Connection {
            token,
            socket,
            recv_buf: BytesMut::new(),
            send_queue: PrioritySendQueue::default(),
            sending_packet: None,
            interest: Ready::hup() | Ready::readable(),
            registered: AtomicBool::new(false),
            assembler: Box::new(PacketWithLenAssembler::default()),
        }
    }

    /// Register this connection with the IO event loop.
    pub fn register_socket(
        &self, reg: Token, event_loop: &Poll,
    ) -> io::Result<()> {
        if self.registered.load(AtomicOrdering::SeqCst) {
            return Ok(());
        }
        trace!(
            "Connection register, token = {}, reg = {:?}",
            self.token,
            reg
        );
        if let Err(e) = event_loop.register(
            &self.socket,
            reg,
            self.interest,
            PollOpt::edge(),
        ) {
            trace!(
                "Failed to register socket, token = {}, reg = {:?}, err = {:?}",
                self.token,
                reg,
                e
            );
        }
        self.registered.store(true, AtomicOrdering::SeqCst);
        Ok(())
    }

    /// Update connection registration. Should be called at the end of the IO
    /// handler.
    pub fn update_socket(
        &self, reg: Token, event_loop: &Poll,
    ) -> io::Result<()> {
        trace!(
            "Connection reregister, token = {}, reg = {:?}",
            self.token,
            reg
        );
        if !self.registered.load(AtomicOrdering::SeqCst) {
            self.register_socket(reg, event_loop)
        } else {
            event_loop
                .reregister(&self.socket, reg, self.interest, PollOpt::edge())
                .unwrap_or_else(|e| {
                    trace!("Failed to reregister socket, token = {}, reg = {:?}, err = {:?}", self.token, reg, e);
                });
            Ok(())
        }
    }

    /// Delete connection registration. Should be called at the end of the IO
    /// handler.
    pub fn deregister_socket(&self, event_loop: &Poll) -> io::Result<()> {
        trace!("Connection deregister, token = {}", self.token);
        event_loop.deregister(&self.socket).ok();
        Ok(())
    }

    pub fn token(&self) -> StreamToken { self.token }

    /// Get remote peer address
    pub fn remote_addr(&self) -> io::Result<SocketAddr> {
        self.socket.peer_addr()
    }

    /// Get remote peer address string
    pub fn remote_addr_str(&self) -> String {
        self.remote_addr()
            .map(|a| a.to_string())
            .unwrap_or_else(|_| "Unknown".to_owned())
    }

    pub fn details(&self) -> ConnectionDetails {
        ConnectionDetails {
            token: self.token,
            recv_buf: self.recv_buf.len(),
            sending_buf: self
                .sending_packet
                .as_ref()
                .map_or(0, |p| p.data.len() - p.sending_pos),
            priority_queue_normal: self
                .send_queue
                .len_by_priority(SendQueuePriority::Normal),
            priority_queue_high: self
                .send_queue
                .len_by_priority(SendQueuePriority::High),
            interest: format!("{:?}", self.interest),
            registered: self.registered.load(AtomicOrdering::SeqCst),
        }
    }
}

/// User friendly connection information that used by Debug RPC.
#[derive(Serialize, Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct ConnectionDetails {
    pub token: StreamToken,
    pub recv_buf: usize,
    pub sending_buf: usize,
    pub priority_queue_normal: usize,
    pub priority_queue_high: usize,
    pub interest: String,
    pub registered: bool,
}

/// Assembler that prefix packet with length information.
///
/// To avoid memory copy, the first n-bytes will be swapped into the end, and
/// use the first n-bytes for packet length information.
pub struct PacketWithLenAssembler {
    data_len_bytes: usize,
    max_data_len: usize,
}

impl PacketWithLenAssembler {
    fn new(data_len_bytes: usize, max_packet_len: Option<usize>) -> Self {
        assert!(data_len_bytes > 0 && data_len_bytes <= 3);

        let max = usize::max_value() >> (64 - 8 * data_len_bytes);
        let max_packet_len = max_packet_len.unwrap_or(max);
        assert!(max_packet_len > data_len_bytes && max_packet_len <= max);

        PacketWithLenAssembler {
            data_len_bytes,
            max_data_len: max_packet_len - data_len_bytes,
        }
    }
}

impl Default for PacketWithLenAssembler {
    fn default() -> Self {
        PacketWithLenAssembler::new(3, Some(MAX_PAYLOAD_SIZE))
    }
}

impl PacketAssembler for PacketWithLenAssembler {
    #[inline]
    fn is_oversized(&self, len: usize) -> bool { len > self.max_data_len }

    fn assemble(&self, data: &mut Vec<u8>) -> Result<(), Error> {
        if self.is_oversized(data.len()) {
            return Err(Error::OversizedPacket.into());
        }

        // first n-bytes swapped to the end
        let swapped: Vec<u8> =
            data.iter().take(self.data_len_bytes).cloned().collect();

        // extend n-bytes
        let data_len = data.len();
        data.resize(data_len + self.data_len_bytes, 0);

        // fill first n-bytes with LE data_len
        data[..self.data_len_bytes]
            .copy_from_slice(&data_len.to_le_bytes()[..self.data_len_bytes]);

        // fill the last n-bytes with swapped values
        let start = data.len() - swapped.len();
        data[start..].copy_from_slice(&swapped);

        Ok(())
    }

    fn load(&self, buf: &mut BytesMut) -> Option<BytesMut> {
        if buf.len() < self.data_len_bytes {
            return None;
        }

        // parse data length from first n-bytes
        let mut le_bytes = [0u8; 8];
        le_bytes
            .split_at_mut(self.data_len_bytes)
            .0
            .copy_from_slice(&buf[..self.data_len_bytes]);
        let data_size = usize::from_le_bytes(le_bytes);

        // some data not received yet
        if buf.len() < self.data_len_bytes + data_size {
            return None;
        }

        let mut packet = buf.split_to(self.data_len_bytes + data_size);

        if data_size >= self.data_len_bytes {
            // last n-bytes are swapped
            let swapped = packet.split_off(data_size);
            packet[..self.data_len_bytes].copy_from_slice(&swapped);
        } else {
            // just ignore the first n-bytes of msg length
            let _ = packet.split_to(self.data_len_bytes);
        };

        Some(packet)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::iolib::*;
    use mio::Ready;
    use std::{
        cmp,
        io::{Read, Result, Write},
    };

    struct TestSocket {
        read_buf: Vec<u8>,
        write_buf: Vec<u8>,
        cursor: usize,
        buf_size: usize,
    }

    impl TestSocket {
        fn new() -> Self {
            TestSocket {
                read_buf: vec![],
                write_buf: vec![],
                cursor: 0,
                buf_size: 0,
            }
        }

        fn with_buf(buf_size: usize) -> Self {
            TestSocket {
                read_buf: vec![],
                write_buf: vec![],
                cursor: 0,
                buf_size,
            }
        }
    }

    impl Read for TestSocket {
        fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
            let end = cmp::min(self.read_buf.len(), self.cursor + buf.len());
            if self.cursor > end {
                return Ok(0);
            }
            let len = end - self.cursor;
            if len == 0 {
                Ok(0)
            } else {
                for i in self.cursor..end {
                    buf[i - self.cursor] = self.read_buf[i];
                }
                self.cursor = end;
                Ok(len)
            }
        }
    }

    impl Write for TestSocket {
        fn write(&mut self, buf: &[u8]) -> Result<usize> {
            if self.buf_size == 0 || buf.len() < self.buf_size {
                self.write_buf.extend(buf.iter().cloned());
                Ok(buf.len())
            } else {
                self.write_buf
                    .extend(buf.iter().take(self.buf_size).cloned());
                Ok(self.buf_size)
            }
        }

        fn flush(&mut self) -> Result<()> {
            unimplemented!();
        }
    }

    impl GenericSocket for TestSocket {}

    type TestConnection = GenericConnection<TestSocket>;

    impl TestConnection {
        fn new() -> Self {
            TestConnection {
                token: 1_234_567_890usize,
                socket: TestSocket::new(),
                send_queue: PrioritySendQueue::default(),
                sending_packet: None,
                recv_buf: BytesMut::new(),
                interest: Ready::hup() | Ready::readable(),
                registered: AtomicBool::new(false),
                assembler: Box::new(PacketWithLenAssembler::new(1, None)),
            }
        }
    }

    fn test_io() -> IoContext<i32> {
        IoContext::new(IoChannel::disconnected(), 0)
    }

    #[test]
    fn connection_write_empty() {
        let mut connection = TestConnection::new();
        let status = connection.writable(&test_io());
        assert!(status.is_ok());
        let status = status.unwrap();
        assert!(WriteStatus::Complete == status);
    }

    #[test]
    fn connection_write_is_buffered() {
        let mut connection = TestConnection::new();
        connection.socket = TestSocket::with_buf(10);
        let packet = Packet::new(vec![0; 60], SendQueuePriority::High).unwrap();
        connection
            .send_queue
            .push_back(packet, SendQueuePriority::High);

        let status = connection.writable(&test_io());

        assert!(status.is_ok());
        assert_eq!(0, connection.send_queue.len());

        let sending_packet = connection.sending_packet.unwrap();
        assert_eq!(sending_packet.data.len(), 61);
        assert_eq!(sending_packet.sending_pos, 10);
    }

    #[test]
    fn connection_read() {
        let mut connection = TestConnection::new();

        let mut data = vec![1, 3, 5, 7];
        connection.assembler.assemble(&mut data).unwrap();

        connection.socket.read_buf = data[..2].to_vec();
        {
            let status = connection.readable();
            assert!(status.is_ok());
            assert!(status.unwrap().is_none());
        }

        connection.socket.read_buf.extend_from_slice(&data[2..]);
        {
            let status = connection.readable();
            assert!(status.is_ok());
            assert_eq!(&status.unwrap().unwrap()[..], &[1, 3, 5, 7]);
        }

        {
            let status = connection.readable();
            assert!(status.is_ok());
            assert!(status.unwrap().is_none());
        }
    }

    #[test]
    fn test_assembler_oversized() {
        let assembler = PacketWithLenAssembler::default();
        assert_eq!(assembler.is_oversized(MAX_PAYLOAD_SIZE - 4), false);
        assert_eq!(assembler.is_oversized(MAX_PAYLOAD_SIZE - 3), false);
        assert_eq!(assembler.is_oversized(MAX_PAYLOAD_SIZE - 2), true);
    }

    #[test]
    fn test_assembler_assemble() {
        let assembler = PacketWithLenAssembler::default();

        // data length > 3
        let mut data = vec![1, 2, 3, 4, 5];
        assembler.assemble(&mut data).unwrap();
        assert_eq!(data, vec![5, 0, 0, 4, 5, 1, 2, 3]);

        // data length == 3
        let mut data = vec![1, 2, 3];
        assembler.assemble(&mut data).unwrap();
        assert_eq!(data, vec![3, 0, 0, 1, 2, 3]);

        // data length < 3
        let mut data = vec![1, 2];
        assembler.assemble(&mut data).unwrap();
        assert_eq!(data, vec![2, 0, 0, 1, 2]);
    }

    #[test]
    fn test_assembler_load() {
        let assembler = PacketWithLenAssembler::default();

        // packet not ready
        assert_eq!(assembler.load(&mut BytesMut::from(&vec![5][..])), None);
        assert_eq!(
            assembler.load(&mut BytesMut::from(&vec![5, 0, 0][..])),
            None
        );
        assert_eq!(
            assembler.load(&mut BytesMut::from(&vec![5, 0, 0, 4, 5, 1, 2][..])),
            None
        );

        // packet ready and length > 3
        let mut buf = BytesMut::from(&vec![5, 0, 0, 4, 5, 1, 2, 3][..]);
        assert_eq!(&assembler.load(&mut buf).unwrap()[..], &[1, 2, 3, 4, 5]);
        assert_eq!(buf.is_empty(), true);

        // packet ready and length < 3
        let mut buf = BytesMut::from(&vec![2, 0, 0, 1, 2][..]);
        assert_eq!(&assembler.load(&mut buf).unwrap()[..], &[1, 2]);
        assert_eq!(buf.is_empty(), true);

        // packet ready with some data of the next packet
        let mut buf = BytesMut::from(&vec![5, 0, 0, 4, 5, 1, 2, 3, 6, 7][..]);
        assert_eq!(&assembler.load(&mut buf).unwrap()[..], &[1, 2, 3, 4, 5]);
        assert_eq!(&buf[..], &[6, 7]);
    }
}