1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
// Copyright 2015-2020 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see <http://www.gnu.org/licenses/>.
//! Lru-cache related utilities as quick-and-dirty wrappers around the lru-cache
//! crate.
use lru_cache::LruCache;
use malloc_size_of::{new_malloc_size_ops, MallocSizeOf, MallocSizeOfOps};
use std::hash::Hash;
const INITIAL_CAPACITY: usize = 4;
/// An LRU-cache which operates on memory used.
pub struct MemoryLruCache<K: Eq + Hash, V> {
inner: LruCache<K, V>,
malloc_size_of_ops: MallocSizeOfOps,
cur_size: usize,
max_size: usize,
}
impl<K: Eq + Hash, V: MallocSizeOf> MemoryLruCache<K, V> {
// amount of memory used when the item will be put on the heap.
fn heap_size_of(&mut self, val: &V) -> usize {
::std::mem::size_of::<V>() + val.size_of(&mut self.malloc_size_of_ops)
}
}
impl<K: Eq + Hash, V: MallocSizeOf> MemoryLruCache<K, V> {
/// Create a new cache with a maximum size in bytes.
pub fn new(max_size: usize) -> Self {
MemoryLruCache {
inner: LruCache::new(INITIAL_CAPACITY),
malloc_size_of_ops: new_malloc_size_ops(),
max_size,
cur_size: 0,
}
}
/// Insert an item.
pub fn insert(&mut self, key: K, val: V) {
let cap = self.inner.capacity();
// grow the cache as necessary; it operates on amount of items
// but we're working based on memory usage.
if self.inner.len() == cap && self.cur_size < self.max_size {
self.inner.set_capacity(cap * 2);
}
self.cur_size += self.heap_size_of(&val);
// account for any element displaced from the cache.
if let Some(lru) = self.inner.insert(key, val) {
self.cur_size -= self.heap_size_of(&lru);
}
// remove elements until we are below the memory target.
while self.cur_size > self.max_size {
match self.inner.remove_lru() {
Some((_, v)) => self.cur_size -= self.heap_size_of(&v),
_ => break,
}
}
}
/// Get a reference to an item in the cache. It is a logic error for its
/// heap size to be altered while borrowed.
pub fn get_mut(&mut self, key: &K) -> Option<&mut V> {
self.inner.get_mut(key)
}
/// Currently-used size of values in bytes.
pub fn current_size(&self) -> usize { self.cur_size }
/// Get backing LRU cache instance (read only)
pub fn backstore(&self) -> &LruCache<K, V> { &self.inner }
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
let mut cache = MemoryLruCache::new(256);
let val1 = vec![0u8; 100];
let size1 = cache.heap_size_of(&val1);
cache.insert("hello", val1);
assert_eq!(cache.current_size(), size1);
let val2 = vec![0u8; 210];
let size2 = cache.heap_size_of(&val2);
cache.insert("world", val2);
assert!(cache.get_mut(&"hello").is_none());
assert!(cache.get_mut(&"world").is_some());
assert_eq!(cache.current_size(), size2);
}
}