1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
use malloc_size_of::{MallocSizeOf, MallocSizeOfOps};
pub const NULL: usize = !0;
impl<Ext: Default> Default for BaseNode<Ext> {
fn default() -> Self {
Self {
parent: NULL,
child: [NULL, NULL],
value: 0,
min: 0,
delta: 0,
payload: Ext::default(),
}
}
}
#[derive(Clone, Debug)]
struct BaseNode<Ext> {
/// if current node is the root node of an Auxiliary Tree, parent
/// points to the parent node in actual tree, otherwise parent
/// points to the parent node in a Auxiliary Tree
parent: usize,
/// left and right children in the Auxiliary Tree
child: [usize; 2],
/// if node `o` is the topmost node in a preferred path,
/// and let `r` be the root node of the Auxiliary Tree,
/// the actual value of `o` equals to
/// `o.value + r.parent.caterpillar_value`,
/// otherwise the actual value equals to `o.value`
value: i128,
/// minimum subtree value of current node in the Auxiliary Tree
min: i128,
/// The delta needs to be applied to `value` and `min` of the
/// nodes in the subtree of the Auxiliary Tree rooted at this
/// node excluding the node itself.
delta: i128,
payload: Ext,
}
#[derive(Debug, Default, Clone, Copy)]
pub struct Unit;
#[derive(Debug, Clone, Copy)]
pub struct PathLength {
size: usize,
}
impl Default for PathLength {
fn default() -> Self { Self { size: 1 } }
}
#[derive(Debug, Default, Clone, Copy)]
pub struct Caterpillar {
caterpillar_value: i128,
caterpillar_delta: i128,
}
pub struct LinkCutTree<Ext> {
tree: Vec<BaseNode<Ext>>,
}
impl<Ext: Update + DeltaAndPreferredChild + Clone + Default> LinkCutTree<Ext> {
/// return whether node `o` is the left or right child of its
/// parent (left: 0; right: 1)
/// Assumption:
/// If `o` is the root node of an Auxiliary Tree, the return
/// value is meaningless.
#[inline]
fn direction(&mut self, o: usize) -> usize {
let parent = self.tree[o].parent;
if parent == NULL {
0
} else {
(self.tree[parent].child[1] == o) as usize
}
}
/// whether node `o` is the root of an Auxiliary Tree
/// Assumption:
/// The children of a leaf node of an Auxiliary Tree are NULLs.
#[inline]
fn is_root(&mut self, o: usize) -> bool {
let parent = self.tree[o].parent;
parent == NULL
|| (self.tree[parent].child[0] != o
&& self.tree[parent].child[1] != o)
}
/// make node `c` the child of node `o` in the Auxiliary Tree,
/// `d = 0` means left child, `d = 1` means right child.
#[inline]
fn set_child(&mut self, o: usize, c: usize, d: usize) {
self.tree[o].child[d] = c;
if c != NULL {
self.tree[c].parent = o;
}
}
/// make node `o` closer to root, there are 4 kinds of rotate
/// gp gp
/// / \ / \
/// p(o) T4 o(p) T4
/// / \ / \
/// o(p) T3 <==> T1 p(o)
/// / \ / \
/// T1 T2 T2 T3
///
/// gp gp
/// / \ / \
/// T1 p(o) T1 o(p)
/// / \ / \
/// o(p) T4 <==> T2 p(o)
/// / \ / \
/// T2 T3 T3 T4
///
/// Assumption:
/// apply_delta() must be invoked for parent of `o` before.
fn rotate(&mut self, o: usize) {
if o == NULL || self.is_root(o) {
return;
}
let parent = self.tree[o].parent;
let grandparent = self.tree[parent].parent;
let parent_is_root = self.is_root(parent);
let d1 = self.direction(o);
let d2 = self.direction(parent);
self.set_child(parent, self.tree[o].child[1 - d1], d1);
self.set_child(o, parent, 1 - d1);
if !parent_is_root {
self.set_child(grandparent, o, d2);
}
self.tree[o].parent = grandparent;
self.update(parent);
}
/// after splay, node `o` will become the root of a Auxiliary Tree
/// the `delta` and `caterpillar_delta` of node `o` will be cleared
/// 1. parent is root: zig
/// 2. gp -> p -> o the same direction: zig-zig
/// 3. gp -> p -> o not the same direction: zig-zag
fn splay(&mut self, o: usize) {
assert!(o != NULL);
// apply `delta` and `caterpillar_delta` along the path
// from `o` to the root of the Auxiliary Tree
let mut path = Vec::new();
let mut p = o;
while !self.is_root(p) {
path.push(p);
p = self.tree[p].parent;
}
path.push(p);
path.reverse();
for v in path {
self.apply_delta(v);
}
while !self.is_root(o) {
let parent = self.tree[o].parent;
if !self.is_root(parent) {
if self.direction(o) == self.direction(parent) {
self.rotate(parent);
} else {
self.rotate(o);
}
}
self.rotate(o);
}
self.update(o);
}
/// make the path from node `o` to the root become a preferred path
/// return
fn access(&mut self, o: usize) -> usize {
assert!(o != NULL);
let mut last = NULL;
let mut now = o;
while now != NULL {
self.remove_preferred_child(now);
self.append_preferred_child(now, last);
last = now;
now = self.tree[now].parent;
}
self.splay(o);
last
}
pub fn new() -> Self { Self { tree: Vec::new() } }
pub fn size(&self) -> usize { self.tree.len() }
pub fn make_tree(&mut self, v: usize) {
if self.tree.len() <= v {
self.tree.resize(v + 1, BaseNode::<Ext>::default());
} else {
self.tree[v] = BaseNode::<Ext>::default();
}
}
pub fn lca(&mut self, v: usize, w: usize) -> usize {
self.access(v);
self.access(w)
}
pub fn set(&mut self, v: usize, value: i128) {
self.access(v);
self.tree[v].value = value;
self.update(v);
}
pub fn path_apply(&mut self, v: usize, delta: i128) {
self.access(v);
self.tree[v].value += delta;
self.tree[v].delta += delta;
self.tree[v].min += delta;
}
pub fn path_aggregate(&mut self, v: usize) -> i128 {
self.access(v);
self.tree[v].min
}
pub fn path_aggregate_chop(&mut self, v: usize, u: usize) -> i128 {
self.access(v);
self.splay(u);
let right_c = self.tree[u].child[1];
assert_ne!(right_c, NULL);
self.update(right_c);
self.tree[right_c].min
}
pub fn get(&mut self, v: usize) -> i128 {
self.access(v);
self.tree[v].value
}
fn update(&mut self, o: usize) { Ext::update(self, o) }
fn apply_delta(&mut self, o: usize) { Ext::apply_delta(self, o) }
fn append_preferred_child(&mut self, o: usize, u: usize) {
Ext::append_preferred_child(self, o, u)
}
fn remove_preferred_child(&mut self, o: usize) {
Ext::remove_preferred_child(self, o)
}
}
impl<Ext: Link> LinkCutTree<Ext> {
pub fn split_root(&mut self, parent: usize, v: usize) {
Ext::split_root(self, parent, v)
}
/// make `w` as a new child of `v`, make sure `w` is the root of a
/// Auxiliary Tree
pub fn link(&mut self, v: usize, w: usize) { Ext::link(self, v, w) }
}
pub trait DeltaAndPreferredChild: Update + Sized {
/// Apply `delta` to children in a Auxiliary Tree.
/// This clears the `delta` of `o`.
fn apply_delta(tree: &mut LinkCutTree<Self>, o: usize) {
if tree.tree[o].delta != 0 {
for i in 0..2 {
let c = tree.tree[o].child[i];
if c != NULL {
tree.tree[c].delta += tree.tree[o].delta;
tree.tree[c].value += tree.tree[o].delta;
tree.tree[c].min += tree.tree[o].delta;
}
}
tree.tree[o].delta = 0;
}
}
/// remove the preferred child of node `o` in its preferred path
fn remove_preferred_child(tree: &mut LinkCutTree<Self>, o: usize) {
tree.splay(o);
tree.tree[o].child[1] = NULL;
}
/// concat two preferred path contains node `o` and node `u`, make
/// sure that `remove_preferred_child(o)` was called right before
fn append_preferred_child(
tree: &mut LinkCutTree<Self>, o: usize, u: usize,
) {
tree.set_child(o, u, 1);
Update::update(tree, o);
}
}
impl DeltaAndPreferredChild for PathLength {}
impl DeltaAndPreferredChild for Unit {}
pub trait Update: Clone + Default + Sized {
/// Assumption: `delta` of `o` must be 0, i.e.,
/// apply_delta() must be invoked for `o` before invoking update()
fn update(tree: &mut LinkCutTree<Self>, o: usize) {
tree.tree[o].min = tree.tree[o].value;
for i in 0..2 {
let child = tree.tree[o].child[i];
if child != NULL {
if tree.tree[o].min > tree.tree[child].min {
tree.tree[o].min = tree.tree[child].min;
}
}
}
}
}
impl Update for Caterpillar {}
impl Update for Unit {}
pub trait Link: DeltaAndPreferredChild + Update + Sized {
fn split_root(tree: &mut LinkCutTree<Self>, parent: usize, v: usize) {
tree.access(parent);
tree.splay(v);
assert_eq!(tree.tree[v].parent, parent);
tree.tree[v].parent = NULL;
}
/// make `w` as a new child of `v`, make sure `w` is the root of a
/// Auxiliary Tree
fn link(tree: &mut LinkCutTree<Self>, v: usize, w: usize) {
if v == NULL || w == NULL {
return;
}
tree.access(v);
tree.access(w);
tree.tree[w].parent = v;
}
}
impl Link for PathLength {}
impl Link for Unit {}
impl<Ext> MallocSizeOf for LinkCutTree<Ext> {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
self.tree.size_of(ops)
}
}
impl<Ext> MallocSizeOf for BaseNode<Ext> {
fn size_of(&self, _ops: &mut MallocSizeOfOps) -> usize { 0 }
}
impl Update for PathLength {
#[inline]
fn update(tree: &mut LinkCutTree<Self>, o: usize) {
tree.tree[o].payload.size = 1;
tree.tree[o].min = tree.tree[o].value;
for i in 0..2 {
let child = tree.tree[o].child[i];
if child != NULL {
tree.tree[o].payload.size += tree.tree[child].payload.size;
if tree.tree[o].min > tree.tree[child].min {
tree.tree[o].min = tree.tree[child].min;
}
}
}
}
}
impl LinkCutTree<PathLength> {
pub fn ancestor_at(&mut self, v: usize, at: usize) -> usize {
self.access(v);
let mut u = self.tree[v].child[0];
let size = if u == NULL {
0
} else {
self.tree[u].payload.size
};
let mut at = at;
if at < size {
loop {
let w = self.tree[u].child[0];
let size = if w == NULL {
0
} else {
self.tree[w].payload.size
};
if at < size {
u = w;
} else if at == size {
self.splay(u);
return u;
} else {
at -= size + 1;
u = self.tree[u].child[1];
}
}
} else if at == size {
return v;
}
NULL
}
}
impl DeltaAndPreferredChild for Caterpillar {
/// apply `delta` and `caterpillar_delta` to children in a Auxiliary Tree
#[inline]
fn apply_delta(tree: &mut LinkCutTree<Self>, o: usize) {
if tree.tree[o].delta != 0 {
for i in 0..2 {
let c = tree.tree[o].child[i];
if c != NULL {
tree.tree[c].delta += tree.tree[o].delta;
tree.tree[c].value += tree.tree[o].delta;
tree.tree[c].min += tree.tree[o].delta;
}
}
tree.tree[o].delta = 0;
}
if tree.tree[o].payload.caterpillar_delta != 0 {
for i in 0..2 {
let c = tree.tree[o].child[i];
if c != NULL {
tree.tree[c].payload.caterpillar_delta +=
tree.tree[o].payload.caterpillar_delta;
tree.tree[c].payload.caterpillar_value +=
tree.tree[o].payload.caterpillar_delta;
}
}
tree.tree[o].payload.caterpillar_delta = 0;
}
}
/// remove the preferred child of node `o` in its preferred path
fn remove_preferred_child(tree: &mut LinkCutTree<Self>, o: usize) {
tree.splay(o);
let mut u = tree.tree[o].child[1];
tree.tree[o].child[1] = NULL;
if u != NULL {
while tree.tree[u].child[0] != NULL {
u = tree.tree[u].child[0];
}
tree.splay(u);
assert_eq!(tree.tree[u].parent, o);
tree.tree[u].value -= tree.tree[o].payload.caterpillar_value;
Update::update(tree, u);
}
}
/// concat two preferred path contains node `o` and node `u`, make sure that
/// `remove_preferred_child(o)` was called right before
fn append_preferred_child(
tree: &mut LinkCutTree<Self>, o: usize, u: usize,
) {
let mut u = u;
if u != NULL {
// find leftmost node
while tree.tree[u].child[0] != NULL {
u = tree.tree[u].child[0];
}
tree.splay(u);
assert_eq!(tree.tree[u].parent, o);
tree.tree[u].value += tree.tree[o].payload.caterpillar_value;
Update::update(tree, u);
}
tree.set_child(o, u, 1);
Update::update(tree, o);
}
}
impl LinkCutTree<Caterpillar> {
/// ```text
/// ||
/// V3
/// / || \
/// V'2 V2 V"2
/// / || \
/// V'1 V1 V"1
/// / | \
/// V'0 V0 V"0
///
/// In the above figure, we use "/", "|", and "\" to represent light
/// edges, and "||" to represent heavy edges.
///
/// The caterpillar delta/value represents the caterpillar effect of
/// a node V on all its children connected to V through light edges.
/// The caterpillar effect of V on its child connected through heavy
/// edge should already be applied through the delta/value of the child.
/// This is because when accessing a node, it must be on the preferred
/// path and its value should already be the final value with caterpillar
/// effect integrated.
///
/// Specifically, when calling caterpillar_apply(V1, caterpillar_delta),
/// The edges between V1 and all its children become light edges.
/// The caterpillar_value of V1 represents its caterpillar effect on
/// V'0, V0, and V"0. The caterpillar_delta of V1 helps maintain the
/// caterpillar effects of V2 on V'1 and V"1, and V3 on V'2 and V"2,
/// and so on upwards. The value of V1 has already integrated the
/// caterpillar effect of V2 on it, and the delta of V1 helps maintain
/// the integrated caterpillar effects of V3 on V2, and so on upwards.
/// ```
pub fn caterpillar_apply(&mut self, v: usize, caterpillar_delta: i128) {
self.access(v);
self.tree[v].value += caterpillar_delta;
self.tree[v].delta += caterpillar_delta;
self.tree[v].min += caterpillar_delta;
self.tree[v].payload.caterpillar_delta += caterpillar_delta;
self.tree[v].payload.caterpillar_value += caterpillar_delta;
}
}
impl Link for Caterpillar {
fn split_root(
tree: &mut LinkCutTree<Caterpillar>, parent: usize, v: usize,
) {
tree.access(parent);
tree.splay(v);
assert_eq!(tree.tree[v].parent, parent);
tree.tree[v].parent = NULL;
tree.tree[v].value += tree.tree[parent].payload.caterpillar_value;
}
/// make `w` as a new child of `v`, make sure `w` is the root of a Auxiliary
/// Tree
fn link(tree: &mut LinkCutTree<Caterpillar>, v: usize, w: usize) {
if v == NULL || w == NULL {
return;
}
tree.access(v);
tree.access(w);
tree.tree[w].parent = v;
tree.tree[w].value -= tree.tree[v].payload.caterpillar_value;
}
}