1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/
//! This module has definition of various proofs.
use super::{
accumulator::InMemoryAccumulator, position::Position,
verify_transaction_info, MerkleTreeInternalNode, SparseMerkleInternalNode,
SparseMerkleLeafNode,
};
use crate::{
account_state_blob::AccountStateBlob,
ledger_info::LedgerInfo,
transaction::{TransactionInfo, Version},
};
use anyhow::{bail, ensure, format_err, Result};
#[cfg(any(test, feature = "fuzzing"))]
use diem_crypto::hash::TestOnlyHasher;
use diem_crypto::{
hash::{
CryptoHash, CryptoHasher, EventAccumulatorHasher,
TransactionAccumulatorHasher, SPARSE_MERKLE_PLACEHOLDER_HASH,
},
HashValue,
};
#[cfg(any(test, feature = "fuzzing"))]
use proptest_derive::Arbitrary;
use serde::{Deserialize, Serialize};
use std::marker::PhantomData;
/// A proof that can be used authenticate an element in an accumulator given
/// trusted root hash. For example, both `LedgerInfoToTransactionInfoProof` and
/// `TransactionInfoToEventProof` can be constructed on top of this structure.
#[derive(Clone, Serialize, Deserialize)]
pub struct AccumulatorProof<H> {
/// All siblings in this proof, including the default ones. Siblings are
/// ordered from the bottom level to the root level.
siblings: Vec<HashValue>,
phantom: PhantomData<H>,
}
/// Because leaves can only take half the space in the tree, any numbering of
/// the tree leaves must not take the full width of the total space. Thus, for
/// a 64-bit ordering, our maximumm proof depth is limited to 63.
pub type LeafCount = u64;
pub const MAX_ACCUMULATOR_PROOF_DEPTH: usize = 63;
pub const MAX_ACCUMULATOR_LEAVES: LeafCount = 1 << MAX_ACCUMULATOR_PROOF_DEPTH;
impl<H> AccumulatorProof<H>
where H: CryptoHasher
{
/// Constructs a new `AccumulatorProof` using a list of siblings.
pub fn new(siblings: Vec<HashValue>) -> Self {
AccumulatorProof {
siblings,
phantom: PhantomData,
}
}
/// Returns the list of siblings in this proof.
pub fn siblings(&self) -> &[HashValue] { &self.siblings }
/// Verifies an element whose hash is `element_hash` and version is
/// `element_version` exists in the accumulator whose root hash is
/// `expected_root_hash` using the provided proof.
pub fn verify(
&self, expected_root_hash: HashValue, element_hash: HashValue,
element_index: u64,
) -> Result<()> {
ensure!(
self.siblings.len() <= MAX_ACCUMULATOR_PROOF_DEPTH,
"Accumulator proof has more than {} ({}) siblings.",
MAX_ACCUMULATOR_PROOF_DEPTH,
self.siblings.len()
);
let actual_root_hash = self
.siblings
.iter()
.fold(
(element_hash, element_index),
// `index` denotes the index of the ancestor of the element at
// the current level.
|(hash, index), sibling_hash| {
(
if index % 2 == 0 {
// the current node is a left child.
MerkleTreeInternalNode::<H>::new(
hash,
*sibling_hash,
)
.hash()
} else {
// the current node is a right child.
MerkleTreeInternalNode::<H>::new(
*sibling_hash,
hash,
)
.hash()
},
// The index of the parent at its level.
index / 2,
)
},
)
.0;
ensure!(
actual_root_hash == expected_root_hash,
"Root hashes do not match. Actual root hash: {:x}. Expected root hash: {:x}.",
actual_root_hash,
expected_root_hash
);
Ok(())
}
}
impl<H> std::fmt::Debug for AccumulatorProof<H> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "AccumulatorProof {{ siblings: {:?} }}", self.siblings)
}
}
impl<H> PartialEq for AccumulatorProof<H> {
fn eq(&self, other: &Self) -> bool { self.siblings == other.siblings }
}
impl<H> Eq for AccumulatorProof<H> {}
pub type TransactionAccumulatorProof =
AccumulatorProof<TransactionAccumulatorHasher>;
pub type EventAccumulatorProof = AccumulatorProof<EventAccumulatorHasher>;
#[cfg(any(test, feature = "fuzzing"))]
pub type TestAccumulatorProof = AccumulatorProof<TestOnlyHasher>;
/// A proof that can be used to authenticate an element in a Sparse Merkle Tree
/// given trusted root hash. For example, `TransactionInfoToAccountProof` can be
/// constructed on top of this structure.
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct SparseMerkleProof<V> {
/// This proof can be used to authenticate whether a given leaf exists in
/// the tree or not.
/// - If this is `Some(leaf_node)`
/// - If `leaf_node.key` equals requested key, this is an inclusion
/// proof and `leaf_node.value_hash` equals the hash of the
/// corresponding account blob.
/// - Otherwise this is a non-inclusion proof. `leaf_node.key` is
/// the only key that exists in the subtree and
/// `leaf_node.value_hash` equals the hash of the corresponding
/// account blob.
/// - If this is `None`, this is also a non-inclusion proof which
/// indicates the subtree is empty.
leaf: Option<SparseMerkleLeafNode>,
/// All siblings in this proof, including the default ones. Siblings are
/// ordered from the bottom level to the root level.
siblings: Vec<HashValue>,
phantom: PhantomData<V>,
}
impl<V> SparseMerkleProof<V>
where V: CryptoHash
{
/// Constructs a new `SparseMerkleProof` using leaf and a list of siblings.
pub fn new(
leaf: Option<SparseMerkleLeafNode>, siblings: Vec<HashValue>,
) -> Self {
SparseMerkleProof {
leaf,
siblings,
phantom: PhantomData,
}
}
/// Returns the leaf node in this proof.
pub fn leaf(&self) -> Option<SparseMerkleLeafNode> { self.leaf }
/// Returns the list of siblings in this proof.
pub fn siblings(&self) -> &[HashValue] { &self.siblings }
/// If `element_value` is present, verifies an element whose key is
/// `element_key` and value is `element_value` exists in the Sparse
/// Merkle Tree using the provided proof. Otherwise verifies the proof
/// is a valid non-inclusion proof that shows this key doesn't exist in the
/// tree.
pub fn verify(
&self, expected_root_hash: HashValue, element_key: HashValue,
element_value: Option<&V>,
) -> Result<()> {
ensure!(
self.siblings.len() <= HashValue::LENGTH_IN_BITS,
"Sparse Merkle Tree proof has more than {} ({}) siblings.",
HashValue::LENGTH_IN_BITS,
self.siblings.len(),
);
match (element_value, self.leaf) {
(Some(value), Some(leaf)) => {
// This is an inclusion proof, so the key and value hash
// provided in the proof should match
// element_key and element_value_hash. `siblings` should prove
// the route from the leaf node to the root.
ensure!(
element_key == leaf.key,
"Keys do not match. Key in proof: {:x}. Expected key: {:x}.",
leaf.key,
element_key
);
let hash = value.hash();
ensure!(
hash == leaf.value_hash,
"Value hashes do not match. Value hash in proof: {:x}. \
Expected value hash: {:x}",
leaf.value_hash,
hash,
);
}
(Some(_value), None) => {
bail!("Expected inclusion proof. Found non-inclusion proof.")
}
(None, Some(leaf)) => {
// This is a non-inclusion proof. The proof intends to show that
// if a leaf node representing `element_key` is
// inserted, it will break a currently existing leaf
// node represented by `proof_key` into a branch. `siblings`
// should prove the route from that leaf node to
// the root.
ensure!(
element_key != leaf.key,
"Expected non-inclusion proof, but key exists in proof.",
);
ensure!(
element_key.common_prefix_bits_len(leaf.key) >= self.siblings.len(),
"Key would not have ended up in the subtree where the provided key in proof \
is the only existing key, if it existed. So this is not a valid \
non-inclusion proof.",
);
}
(None, None) => {
// This is a non-inclusion proof. The proof intends to show that
// if a leaf node representing `element_key` is
// inserted, it will show up at a currently empty
// position. `sibling` should prove the route from this empty
// position to the root.
}
}
let current_hash = self
.leaf
.map_or(*SPARSE_MERKLE_PLACEHOLDER_HASH, |leaf| leaf.hash());
let actual_root_hash = self
.siblings
.iter()
.zip(
element_key
.iter_bits()
.rev()
.skip(HashValue::LENGTH_IN_BITS - self.siblings.len()),
)
.fold(current_hash, |hash, (sibling_hash, bit)| {
if bit {
SparseMerkleInternalNode::new(*sibling_hash, hash).hash()
} else {
SparseMerkleInternalNode::new(hash, *sibling_hash).hash()
}
});
ensure!(
actual_root_hash == expected_root_hash,
"Root hashes do not match. Actual root hash: {:x}. Expected root hash: {:x}.",
actual_root_hash,
expected_root_hash,
);
Ok(())
}
}
/// A proof that can be used to show that two Merkle accumulators are consistent
/// -- the big one can be obtained by appending certain leaves to the small one.
/// For example, at some point in time a client knows that the root hash of the
/// ledger at version 10 is `old_root` (it could be a waypoint). If a server
/// wants to prove that the new ledger at version `N` is derived from the
/// old ledger the client knows, it can show the subtrees that represent all the
/// new leaves. If the client can verify that it can indeed obtain the new root
/// hash by appending these new leaves, it can be convinced that the two
/// accumulators are consistent.
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct AccumulatorConsistencyProof {
/// The subtrees representing the newly appended leaves.
subtrees: Vec<HashValue>,
}
impl AccumulatorConsistencyProof {
/// Constructs a new `AccumulatorConsistencyProof` using given `subtrees`.
pub fn new(subtrees: Vec<HashValue>) -> Self { Self { subtrees } }
/// Returns the subtrees.
pub fn subtrees(&self) -> &[HashValue] { &self.subtrees }
}
/// A proof that is similar to `AccumulatorProof`, but can be used to
/// authenticate a range of leaves. For example, given the following
/// accumulator:
///
/// ```text
/// root
/// / \
/// / \
/// / \
/// o o
/// / \ / \
/// / \ / \
/// X o o Y
/// / \ / \ / \ / \
/// o o a b c Z o o
/// ```
///
/// if the proof wants to show that `[a, b, c]` exists in the accumulator, it
/// would need `X` on the left and `Y` and `Z` on the right.
#[derive(Clone, Deserialize, Serialize)]
pub struct AccumulatorRangeProof<H> {
/// The siblings on the left of the path from the first leaf to the root.
/// Siblings near the root are at the beginning of the vector.
left_siblings: Vec<HashValue>,
/// The sliblings on the right of the path from the last leaf to the root.
/// Siblings near the root are at the beginning of the vector.
right_siblings: Vec<HashValue>,
phantom: PhantomData<H>,
}
impl<H> AccumulatorRangeProof<H>
where H: CryptoHasher
{
/// Constructs a new `AccumulatorRangeProof` using `left_siblings` and
/// `right_siblings`.
pub fn new(
left_siblings: Vec<HashValue>, right_siblings: Vec<HashValue>,
) -> Self {
Self {
left_siblings,
right_siblings,
phantom: PhantomData,
}
}
/// Constructs a new `AccumulatorRangeProof` for an empty list of leaves.
pub fn new_empty() -> Self { Self::new(vec![], vec![]) }
/// Get all the left siblngs.
pub fn left_siblings(&self) -> &Vec<HashValue> { &self.left_siblings }
/// Get all the right siblngs.
pub fn right_siblings(&self) -> &Vec<HashValue> { &self.right_siblings }
/// Verifies the proof is correct. The verifier needs to have
/// `expected_root_hash`, the index of the first leaf and all of the
/// leaves in possession.
pub fn verify(
&self, expected_root_hash: HashValue, first_leaf_index: Option<u64>,
leaf_hashes: &[HashValue],
) -> Result<()> {
if first_leaf_index.is_none() {
ensure!(
leaf_hashes.is_empty(),
"first_leaf_index indicated empty list while leaf_hashes is not empty.",
);
ensure!(
self.left_siblings.is_empty() && self.right_siblings.is_empty(),
"No siblings are needed.",
);
return Ok(());
}
ensure!(
self.left_siblings.len() <= MAX_ACCUMULATOR_PROOF_DEPTH,
"Proof has more than {} ({}) left siblings.",
MAX_ACCUMULATOR_PROOF_DEPTH,
self.left_siblings.len(),
);
ensure!(
self.right_siblings.len() <= MAX_ACCUMULATOR_PROOF_DEPTH,
"Proof has more than {} ({}) right siblings.",
MAX_ACCUMULATOR_PROOF_DEPTH,
self.right_siblings.len(),
);
ensure!(
!leaf_hashes.is_empty(),
"leaf_hashes is empty while first_leaf_index indicated non-empty list.",
);
let mut left_sibling_iter = self.left_siblings.iter().peekable();
let mut right_sibling_iter = self.right_siblings.iter().peekable();
let mut first_pos = Position::from_leaf_index(
first_leaf_index.expect("first_leaf_index should not be None."),
);
let mut current_hashes = leaf_hashes.to_vec();
let mut parent_hashes = vec![];
// Keep reducing the list of hashes by combining all the children pairs,
// until there is only one hash left.
while current_hashes.len() > 1
|| left_sibling_iter.peek().is_some()
|| right_sibling_iter.peek().is_some()
{
let mut children_iter = current_hashes.iter();
// If the first position on the current level is a right child, it
// needs to be combined with a sibling on the left.
if first_pos.is_right_child() {
let left_hash = *left_sibling_iter.next().ok_or_else(|| {
format_err!("First child is a right child, but missing sibling on the left.")
})?;
let right_hash =
*children_iter.next().expect("The first leaf must exist.");
parent_hashes.push(
MerkleTreeInternalNode::<H>::new(left_hash, right_hash)
.hash(),
);
}
// Next we take two children at a time and compute their parents.
let mut children_iter = children_iter.as_slice().chunks_exact(2);
while let Some(chunk) = children_iter.next() {
let left_hash = chunk[0];
let right_hash = chunk[1];
parent_hashes.push(
MerkleTreeInternalNode::<H>::new(left_hash, right_hash)
.hash(),
);
}
// Similarly, if the last position is a left child, it needs to be
// combined with a sibling on the right.
let remainder = children_iter.remainder();
assert!(remainder.len() <= 1);
if !remainder.is_empty() {
let left_hash = remainder[0];
let right_hash = *right_sibling_iter.next().ok_or_else(|| {
format_err!("Last child is a left child, but missing sibling on the right.")
})?;
parent_hashes.push(
MerkleTreeInternalNode::<H>::new(left_hash, right_hash)
.hash(),
);
}
first_pos = first_pos.parent();
current_hashes.clear();
std::mem::swap(&mut current_hashes, &mut parent_hashes);
}
ensure!(
current_hashes[0] == expected_root_hash,
"Root hashes do not match. Actual root hash: {:x}. Expected root hash: {:x}.",
current_hashes[0],
expected_root_hash,
);
Ok(())
}
}
impl<H> std::fmt::Debug for AccumulatorRangeProof<H> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"AccumulatorRangeProof {{ left_siblings: {:?}, right_siblings: {:?} }}",
self.left_siblings, self.right_siblings,
)
}
}
impl<H> PartialEq for AccumulatorRangeProof<H> {
fn eq(&self, other: &Self) -> bool {
self.left_siblings == other.left_siblings
&& self.right_siblings == other.right_siblings
}
}
impl<H> Eq for AccumulatorRangeProof<H> {}
pub type TransactionAccumulatorRangeProof =
AccumulatorRangeProof<TransactionAccumulatorHasher>;
#[cfg(any(test, feature = "fuzzing"))]
pub type TestAccumulatorRangeProof = AccumulatorRangeProof<TestOnlyHasher>;
/// A proof that can be used authenticate a range of consecutive leaves, from
/// the leftmost leaf to a certain one, in a sparse Merkle tree. For example,
/// given the following sparse Merkle tree:
///
/// ```text
/// root
/// / \
/// / \
/// / \
/// o o
/// / \ / \
/// a o o h
/// / \ / \
/// o d e X
/// / \ / \
/// b c f g
/// ```
///
/// if the proof wants show that `[a, b, c, d, e]` exists in the tree, it would
/// need the siblings `X` and `h` on the right.
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct SparseMerkleRangeProof {
/// The vector of siblings on the right of the path from root to last leaf.
/// The ones near the bottom are at the beginning of the vector. In the
/// above example, it's `[X, h]`.
right_siblings: Vec<HashValue>,
}
impl SparseMerkleRangeProof {
/// Constructs a new `SparseMerkleRangeProof`.
pub fn new(right_siblings: Vec<HashValue>) -> Self {
Self { right_siblings }
}
/// Returns the siblings.
pub fn right_siblings(&self) -> &[HashValue] { &self.right_siblings }
}
/// `TransactionInfo` and a `TransactionAccumulatorProof` connecting it to the
/// ledger root.
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)]
#[cfg_attr(any(test, feature = "fuzzing"), derive(Arbitrary))]
pub struct TransactionInfoWithProof {
/// The accumulator proof from ledger info root to leaf that authenticates
/// the hash of the `TransactionInfo` object.
ledger_info_to_transaction_info_proof: TransactionAccumulatorProof,
/// The `TransactionInfo` object at the leaf of the accumulator.
transaction_info: TransactionInfo,
}
impl TransactionInfoWithProof {
/// Constructs a new `TransactionWithProof` object using given
/// `ledger_info_to_transaction_info_proof`.
pub fn new(
ledger_info_to_transaction_info_proof: TransactionAccumulatorProof,
transaction_info: TransactionInfo,
) -> Self {
Self {
ledger_info_to_transaction_info_proof,
transaction_info,
}
}
/// Returns the `ledger_info_to_transaction_info_proof` object in this
/// proof.
pub fn ledger_info_to_transaction_info_proof(
&self,
) -> &TransactionAccumulatorProof {
&self.ledger_info_to_transaction_info_proof
}
/// Returns the `transaction_info` object in this proof.
pub fn transaction_info(&self) -> &TransactionInfo {
&self.transaction_info
}
/// Verifies that the `TransactionInfo` exists in the ledger represented by
/// the `LedgerInfo` at specified version.
pub fn verify(
&self, ledger_info: &LedgerInfo, transaction_version: Version,
) -> Result<()> {
verify_transaction_info(
ledger_info,
transaction_version,
&self.transaction_info,
&self.ledger_info_to_transaction_info_proof,
)?;
Ok(())
}
}
/// The complete proof used to authenticate the state of an account. This
/// structure consists of the `AccumulatorProof` from `LedgerInfo` to
/// `TransactionInfo`, the `TransactionInfo` object and the `SparseMerkleProof`
/// from state root to the account.
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)]
#[cfg_attr(any(test, feature = "fuzzing"), derive(Arbitrary))]
pub struct AccountStateProof {
transaction_info_with_proof: TransactionInfoWithProof,
/// The sparse merkle proof from state root to the account state.
transaction_info_to_account_proof: SparseMerkleProof<AccountStateBlob>,
}
impl AccountStateProof {
/// Constructs a new `AccountStateProof` using given
/// `ledger_info_to_transaction_info_proof`, `transaction_info` and
/// `transaction_info_to_account_proof`.
pub fn new(
transaction_info_with_proof: TransactionInfoWithProof,
transaction_info_to_account_proof: SparseMerkleProof<AccountStateBlob>,
) -> Self {
AccountStateProof {
transaction_info_with_proof,
transaction_info_to_account_proof,
}
}
/// Returns the `transaction_info_with_proof` object in this proof.
pub fn transaction_info_with_proof(&self) -> &TransactionInfoWithProof {
&self.transaction_info_with_proof
}
/// Returns the `transaction_info_to_account_proof` object in this proof.
pub fn transaction_info_to_account_proof(
&self,
) -> &SparseMerkleProof<AccountStateBlob> {
&self.transaction_info_to_account_proof
}
/// Verifies that the state of an account at version `state_version` is
/// correct using the provided proof. If `account_state_blob` is
/// present, we expect the account to exist, otherwise we expect the
/// account to not exist.
pub fn verify(
&self, ledger_info: &LedgerInfo, state_version: Version,
account_address_hash: HashValue,
account_state_blob: Option<&AccountStateBlob>,
) -> Result<()> {
self.transaction_info_to_account_proof.verify(
self.transaction_info_with_proof
.transaction_info
.state_root_hash(),
account_address_hash,
account_state_blob,
)?;
self.transaction_info_with_proof
.verify(ledger_info, state_version)?;
Ok(())
}
}
/// The complete proof used to authenticate a contract event. This structure
/// consists of the `AccumulatorProof` from `LedgerInfo` to `TransactionInfo`,
/// the `TransactionInfo` object and the `AccumulatorProof` from event
/// accumulator root to the event.
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)]
#[cfg_attr(any(test, feature = "fuzzing"), derive(Arbitrary))]
pub struct EventProof {
transaction_info_with_proof: TransactionInfoWithProof,
/// The accumulator proof from event root to the actual event.
transaction_info_to_event_proof: EventAccumulatorProof,
}
impl EventProof {
/// Constructs a new `EventProof` using given
/// `ledger_info_to_transaction_info_proof`, `transaction_info` and
/// `transaction_info_to_event_proof`.
pub fn new(
transaction_info_with_proof: TransactionInfoWithProof,
transaction_info_to_event_proof: EventAccumulatorProof,
) -> Self {
EventProof {
transaction_info_with_proof,
transaction_info_to_event_proof,
}
}
/// Returns the `transaction_info_with_proof` object in this proof.
pub fn transaction_info_with_proof(&self) -> &TransactionInfoWithProof {
&self.transaction_info_with_proof
}
/// Verifies that a given event is correct using provided proof.
pub fn verify(
&self, ledger_info: &LedgerInfo, event_hash: HashValue,
transaction_version: Version,
event_version_within_transaction: Version,
) -> Result<()> {
self.transaction_info_to_event_proof.verify(
self.transaction_info_with_proof
.transaction_info()
.event_root_hash(),
event_hash,
event_version_within_transaction,
)?;
self.transaction_info_with_proof
.verify(ledger_info, transaction_version)?;
Ok(())
}
}
/// The complete proof used to authenticate a list of consecutive transactions.
#[derive(Clone, Debug, Eq, PartialEq, Deserialize, Serialize)]
#[cfg_attr(any(test, feature = "fuzzing"), derive(Arbitrary))]
pub struct TransactionListProof {
/// The accumulator range proof from ledger info root to leaves that
/// authenticates the hashes of all `TransactionInfo` objects.
ledger_info_to_transaction_infos_proof: TransactionAccumulatorRangeProof,
/// The `TransactionInfo` objects that correspond to all the transactions.
transaction_infos: Vec<TransactionInfo>,
}
impl TransactionListProof {
/// Constructs a new `TransactionListProof` using
/// `ledger_info_to_transaction_info_proof` and `transaction_infos`.
pub fn new(
ledger_info_to_transaction_infos_proof: TransactionAccumulatorRangeProof,
transaction_infos: Vec<TransactionInfo>,
) -> Self {
Self {
ledger_info_to_transaction_infos_proof,
transaction_infos,
}
}
/// Constructs a proof for an empty list of transactions.
pub fn new_empty() -> Self {
Self::new(AccumulatorRangeProof::new_empty(), vec![])
}
/// Returns the list of `TransactionInfo` objects.
pub fn transaction_infos(&self) -> &[TransactionInfo] {
&self.transaction_infos
}
pub fn left_siblings(&self) -> &Vec<HashValue> {
self.ledger_info_to_transaction_infos_proof.left_siblings()
}
pub fn unpack(
self,
) -> (TransactionAccumulatorRangeProof, Vec<TransactionInfo>) {
(
self.ledger_info_to_transaction_infos_proof,
self.transaction_infos,
)
}
/// Verifies the list of transactions are correct using the proof. The
/// verifier needs to have the ledger info and the version of the first
/// transaction in possession.
pub fn verify(
&self, ledger_info: &LedgerInfo,
first_transaction_version: Option<Version>,
transaction_hashes: &[HashValue],
) -> Result<()> {
ensure!(
self.transaction_infos.len() == transaction_hashes.len(),
"The number of TransactionInfo objects ({}) does not match the number of \
transactions ({}).",
self.transaction_infos.len(),
transaction_hashes.len(),
);
itertools::zip_eq(transaction_hashes, &self.transaction_infos)
.map(|(txn_hash, txn_info)| {
ensure!(
*txn_hash == txn_info.transaction_hash(),
"The hash of transaction does not match the transaction info in proof. \
Transaction hash: {:x}. Transaction hash in txn_info: {:x}.",
txn_hash,
txn_info.transaction_hash(),
);
Ok(())
})
.collect::<Result<Vec<_>>>()?;
let txn_info_hashes: Vec<_> = self
.transaction_infos
.iter()
.map(CryptoHash::hash)
.collect();
self.ledger_info_to_transaction_infos_proof.verify(
ledger_info.transaction_accumulator_hash(),
first_transaction_version,
&txn_info_hashes,
)?;
Ok(())
}
}
/// A proof that first verifies that establishes correct computation of the root
/// and then returns the new tree to acquire a new root and version.
#[derive(Clone, Debug, Deserialize, Eq, PartialEq, Serialize)]
pub struct AccumulatorExtensionProof<H> {
/// Represents the roots of all the full subtrees from left to right in the
/// original accumulator.
frozen_subtree_roots: Vec<HashValue>,
/// The total number of leaves in original accumulator.
num_leaves: LeafCount,
/// The values representing the newly appended leaves.
leaves: Vec<HashValue>,
hasher: PhantomData<H>,
}
impl<H: CryptoHasher> AccumulatorExtensionProof<H> {
pub fn new(
frozen_subtree_roots: Vec<HashValue>, num_leaves: LeafCount,
leaves: Vec<HashValue>,
) -> Self {
Self {
frozen_subtree_roots,
num_leaves,
leaves,
hasher: PhantomData,
}
}
pub fn verify(
&self, _original_root: HashValue,
) -> anyhow::Result<InMemoryAccumulator<H>> {
let original_tree = InMemoryAccumulator::<H>::new(
self.frozen_subtree_roots.clone(),
self.num_leaves,
)?;
// ensure!(
// original_tree.root_hash() == original_root,
// "Root hashes do not match. Actual root hash: {:x}. Expected root
// hash: {:x}.", original_tree.root_hash(),
// original_root
// );
Ok(original_tree.append(self.leaves.as_slice()))
}
}