1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0

// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/

//! This module implements an in-memory Merkle Accumulator that is similar to
//! what we use in storage. This accumulator will only store a small portion of
//! the tree -- for any subtree that is full, we store only the root. Also we
//! only store the frozen nodes, therefore this structure will always store up
//! to `Log(n)` number of nodes, where `n` is the total number of leaves in
//! the tree.
//!
//! This accumulator is immutable once constructed. If we append new leaves to
//! the tree we will obtain a new accumulator instance and the old one remains
//! unchanged.

#[cfg(test)]
mod accumulator_test;

use super::MerkleTreeInternalNode;
use crate::proof::definition::{LeafCount, MAX_ACCUMULATOR_LEAVES};
use anyhow::{ensure, format_err, Result};
use diem_crypto::{
    hash::{CryptoHash, CryptoHasher, ACCUMULATOR_PLACEHOLDER_HASH},
    HashValue,
};
use std::marker::PhantomData;

/// The Accumulator implementation.
pub struct InMemoryAccumulator<H> {
    /// Represents the roots of all the full subtrees from left to right in
    /// this accumulator. For example, if we have the following
    /// accumulator, this vector will have two hashes that correspond to
    /// `X` and `e`.
    ///
    /// ```text
    ///                 root
    ///                /    \
    ///              /        \
    ///            /            \
    ///           X              o
    ///         /   \           / \
    ///        /     \         /   \
    ///       o       o       o     placeholder
    ///      / \     / \     / \
    ///     a   b   c   d   e   placeholder
    /// ```
    frozen_subtree_roots: Vec<HashValue>,

    /// The total number of leaves in this accumulator.
    num_leaves: LeafCount,

    /// The root hash of this accumulator.
    root_hash: HashValue,

    phantom: PhantomData<H>,
}

impl<H> InMemoryAccumulator<H>
where H: CryptoHasher
{
    /// Constructs a new accumulator with roots of existing frozen subtrees.
    /// Returns error if the number of frozen subtree roots does not match
    /// the number of leaves.
    pub fn new(
        frozen_subtree_roots: Vec<HashValue>, num_leaves: LeafCount,
    ) -> Result<Self> {
        ensure!(
            frozen_subtree_roots.len() == num_leaves.count_ones() as usize,
            "The number of frozen subtrees does not match the number of leaves. \
             frozen_subtree_roots.len(): {}. num_leaves: {}.",
            frozen_subtree_roots.len(),
            num_leaves,
        );

        let root_hash =
            Self::compute_root_hash(&frozen_subtree_roots, num_leaves);

        Ok(Self {
            frozen_subtree_roots,
            num_leaves,
            root_hash,
            phantom: PhantomData,
        })
    }

    /// Constructs a new accumulator with given leaves.
    pub fn from_leaves(leaves: &[HashValue]) -> Self {
        Self::default().append(leaves)
    }

    /// Appends a list of new leaves to an existing accumulator. Since the
    /// accumulator is immutable, the existing one remains unchanged and a
    /// new one representing the result is returned.
    pub fn append(&self, leaves: &[HashValue]) -> Self {
        let mut frozen_subtree_roots = self.frozen_subtree_roots.clone();
        let mut num_leaves = self.num_leaves;
        for leaf in leaves {
            Self::append_one(&mut frozen_subtree_roots, num_leaves, *leaf);
            num_leaves += 1;
        }

        Self::new(frozen_subtree_roots, num_leaves).expect(
            "Appending leaves to a valid accumulator should create another valid accumulator.",
        )
    }

    /// Appends one leaf. This will update `frozen_subtree_roots` to store new
    /// frozen root nodes and remove old nodes if they are now part of a
    /// larger frozen subtree.
    fn append_one(
        frozen_subtree_roots: &mut Vec<HashValue>,
        num_existing_leaves: LeafCount, leaf: HashValue,
    ) {
        // For example, this accumulator originally had N = 7 leaves. Appending
        // a leaf is like adding one to this number N: 0b0111 + 1 =
        // 0b1000. Every time we carry a bit to the left we merge the
        // rightmost two subtrees and compute their parent.
        //
        // ```text
        //       A
        //     /   \
        //    /     \
        //   o       o       B
        //  / \     / \     / \
        // o   o   o   o   o   o   o
        // ```

        // First just append the leaf.
        frozen_subtree_roots.push(leaf);

        // Next, merge the last two subtrees into one. If `num_existing_leaves`
        // has N trailing ones, the carry will happen N times.
        let num_trailing_ones = (!num_existing_leaves).trailing_zeros();

        for _i in 0..num_trailing_ones {
            let right_hash =
                frozen_subtree_roots.pop().expect("Invalid accumulator.");
            let left_hash =
                frozen_subtree_roots.pop().expect("Invalid accumulator.");
            let parent_hash =
                MerkleTreeInternalNode::<H>::new(left_hash, right_hash).hash();
            frozen_subtree_roots.push(parent_hash);
        }
    }

    /// Appends a list of new subtrees to the existing accumulator. This is
    /// similar to \[`append`\](Accumulator::append) except that the new
    /// leaves themselves are not known and they are represented by
    /// `subtrees`. As an example, given the following accumulator that
    /// currently has 10 leaves, the frozen subtree roots and the new subtrees
    /// are annotated below. Note that in this case `subtrees[0]` represents
    /// two new leaves `A` and `B`, `subtrees[1]` represents four new leaves
    /// `C`, `D`, `E` and `F`, `subtrees[2]` represents four new leaves `G`,
    /// `H`, `I` and `J`, and the last `subtrees[3]` represents one new leaf
    /// `K`.
    ///
    /// ```text
    ///                                                                           new_root
    ///                                                                         /          \
    ///                                                                       /              \
    ///                                                                     /                  \
    ///                                                                   /                      \
    ///                                                                 /                          \
    ///                                                               /                              \
    ///                                                             /                                  \
    ///                                                           /                                      \
    ///                                                         /                                          \
    ///                                                       /                                              \
    ///                                                     /                                                  \
    ///                                                   /                                                      \
    ///                                                 /                                                          \
    ///                                         old_root                                                            o
    ///                                        /        \                                                          / \
    ///                                      /            \                                                       /   placeholder
    ///                                    /                \                                                    /
    ///                                  /                    \                                                 /
    ///                                /                        \                                              /
    ///                              /                            \                                           o
    ///                            /                                \                                        / \
    ///                          /                                    \                                     /    \
    ///                        /                                       o                                  /        \
    /// frozen_subtree_roots[0]                                      /   \                              /            \
    ///                    /   \                                    /     \                           /                \
    ///                   /     \                                  /       \                        /                    \
    ///                  o       o                                o         subtrees[1]  subtrees[2]                     o
    ///                 / \     / \                              / \                / \          / \                    / \
    ///                o   o   o   o      frozen_subtree_roots[1]   subtrees[0]    o   o        o   o                  o   placeholder
    ///               / \ / \ / \ / \                         / \           / \   / \ / \      / \ / \                / \
    ///               o o o o o o o o                         o o           A B   C D E F      G H I J  K (subtrees[3]) placeholder
    /// ```
    pub fn append_subtrees(
        &self, subtrees: &[HashValue], num_new_leaves: LeafCount,
    ) -> Result<Self> {
        ensure!(
            num_new_leaves <= MAX_ACCUMULATOR_LEAVES - self.num_leaves,
            "Too many new leaves. self.num_leaves: {}. num_new_leaves: {}.",
            self.num_leaves,
            num_new_leaves,
        );

        if self.num_leaves == 0 {
            return Self::new(subtrees.to_vec(), num_new_leaves);
        }

        let mut current_subtree_roots = self.frozen_subtree_roots.clone();
        let mut current_num_leaves = self.num_leaves;
        let mut remaining_new_leaves = num_new_leaves;
        let mut subtree_iter = subtrees.iter();

        // Check if we want to combine a new subtree with the rightmost frozen
        // subtree. To do that this new subtree needs to represent
        // `rightmost_frozen_subtree_size` leaves, so we need to have at
        // least this many new leaves remaining.
        let mut rightmost_frozen_subtree_size =
            1 << current_num_leaves.trailing_zeros();
        while remaining_new_leaves >= rightmost_frozen_subtree_size {
            // Note that after combining the rightmost frozen subtree of size X
            // with a new subtree, we obtain a subtree of size 2X.
            // If there was already a frozen subtree of size 2X, we
            // need to carry this process further.
            let mut mask = rightmost_frozen_subtree_size;
            let mut current_hash = *subtree_iter
                .next()
                .ok_or_else(|| format_err!("Too few subtrees."))?;
            while current_num_leaves & mask != 0 {
                let left_hash = current_subtree_roots
                    .pop()
                    .expect("This frozen subtree must exist.");
                current_hash =
                    MerkleTreeInternalNode::<H>::new(left_hash, current_hash)
                        .hash();
                mask <<= 1;
            }
            current_subtree_roots.push(current_hash);

            current_num_leaves += rightmost_frozen_subtree_size;
            remaining_new_leaves -= rightmost_frozen_subtree_size;
            rightmost_frozen_subtree_size = mask;
        }

        // Now all the new subtrees are smaller than the rightmost frozen
        // subtree. We just append all of them. Note that if the number
        // of new subtrees does not actually match the number
        // of new leaves, `Self::new` below will raise an error.
        current_num_leaves += remaining_new_leaves;
        current_subtree_roots.extend(subtree_iter);

        Self::new(current_subtree_roots, current_num_leaves)
    }

    /// Returns the root hash of the accumulator.
    pub fn root_hash(&self) -> HashValue { self.root_hash }

    pub fn version(&self) -> u64 {
        if self.num_leaves() == 0 {
            0
        } else {
            self.num_leaves() - 1
        }
    }

    /// Computes the root hash of an accumulator given the frozen subtree roots
    /// and the number of leaves in this accumulator.
    fn compute_root_hash(
        frozen_subtree_roots: &[HashValue], num_leaves: LeafCount,
    ) -> HashValue {
        match frozen_subtree_roots.len() {
            0 => return *ACCUMULATOR_PLACEHOLDER_HASH,
            1 => return frozen_subtree_roots[0],
            _ => (),
        }

        // The trailing zeros do not matter since anything below the lowest
        // frozen subtree is already represented by the subtree roots.
        let mut bitmap = num_leaves >> num_leaves.trailing_zeros();
        let mut current_hash = *ACCUMULATOR_PLACEHOLDER_HASH;
        let mut frozen_subtree_iter = frozen_subtree_roots.iter().rev();

        while bitmap > 0 {
            current_hash = if bitmap & 1 != 0 {
                MerkleTreeInternalNode::<H>::new(
                    *frozen_subtree_iter
                        .next()
                        .expect("This frozen subtree should exist."),
                    current_hash,
                )
            } else {
                MerkleTreeInternalNode::<H>::new(
                    current_hash,
                    *ACCUMULATOR_PLACEHOLDER_HASH,
                )
            }
            .hash();
            bitmap >>= 1;
        }

        current_hash
    }

    /// Returns the set of frozen subtree roots in this accumulator
    pub fn frozen_subtree_roots(&self) -> &Vec<HashValue> {
        &self.frozen_subtree_roots
    }

    /// Returns the total number of leaves in this accumulator.
    pub fn num_leaves(&self) -> LeafCount { self.num_leaves }
}

// We manually implement Debug because H (CryptoHasher) does not implement
// Debug.
impl<H> std::fmt::Debug for InMemoryAccumulator<H> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(
            f,
            "Accumulator {{ frozen_subtree_roots: {:?}, num_leaves: {:?} }}",
            self.frozen_subtree_roots, self.num_leaves
        )
    }
}

impl<H> Default for InMemoryAccumulator<H>
where H: CryptoHasher
{
    fn default() -> Self {
        Self::new(vec![], 0)
            .expect("Constructing empty accumulator should work.")
    }
}