1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/
//! This module implements an in-memory Merkle Accumulator that is similar to
//! what we use in storage. This accumulator will only store a small portion of
//! the tree -- for any subtree that is full, we store only the root. Also we
//! only store the frozen nodes, therefore this structure will always store up
//! to `Log(n)` number of nodes, where `n` is the total number of leaves in
//! the tree.
//!
//! This accumulator is immutable once constructed. If we append new leaves to
//! the tree we will obtain a new accumulator instance and the old one remains
//! unchanged.
#[cfg(test)]
mod accumulator_test;
use super::MerkleTreeInternalNode;
use crate::proof::definition::{LeafCount, MAX_ACCUMULATOR_LEAVES};
use anyhow::{ensure, format_err, Result};
use diem_crypto::{
hash::{CryptoHash, CryptoHasher, ACCUMULATOR_PLACEHOLDER_HASH},
HashValue,
};
use std::marker::PhantomData;
/// The Accumulator implementation.
pub struct InMemoryAccumulator<H> {
/// Represents the roots of all the full subtrees from left to right in
/// this accumulator. For example, if we have the following
/// accumulator, this vector will have two hashes that correspond to
/// `X` and `e`.
///
/// ```text
/// root
/// / \
/// / \
/// / \
/// X o
/// / \ / \
/// / \ / \
/// o o o placeholder
/// / \ / \ / \
/// a b c d e placeholder
/// ```
frozen_subtree_roots: Vec<HashValue>,
/// The total number of leaves in this accumulator.
num_leaves: LeafCount,
/// The root hash of this accumulator.
root_hash: HashValue,
phantom: PhantomData<H>,
}
impl<H> InMemoryAccumulator<H>
where H: CryptoHasher
{
/// Constructs a new accumulator with roots of existing frozen subtrees.
/// Returns error if the number of frozen subtree roots does not match
/// the number of leaves.
pub fn new(
frozen_subtree_roots: Vec<HashValue>, num_leaves: LeafCount,
) -> Result<Self> {
ensure!(
frozen_subtree_roots.len() == num_leaves.count_ones() as usize,
"The number of frozen subtrees does not match the number of leaves. \
frozen_subtree_roots.len(): {}. num_leaves: {}.",
frozen_subtree_roots.len(),
num_leaves,
);
let root_hash =
Self::compute_root_hash(&frozen_subtree_roots, num_leaves);
Ok(Self {
frozen_subtree_roots,
num_leaves,
root_hash,
phantom: PhantomData,
})
}
/// Constructs a new accumulator with given leaves.
pub fn from_leaves(leaves: &[HashValue]) -> Self {
Self::default().append(leaves)
}
/// Appends a list of new leaves to an existing accumulator. Since the
/// accumulator is immutable, the existing one remains unchanged and a
/// new one representing the result is returned.
pub fn append(&self, leaves: &[HashValue]) -> Self {
let mut frozen_subtree_roots = self.frozen_subtree_roots.clone();
let mut num_leaves = self.num_leaves;
for leaf in leaves {
Self::append_one(&mut frozen_subtree_roots, num_leaves, *leaf);
num_leaves += 1;
}
Self::new(frozen_subtree_roots, num_leaves).expect(
"Appending leaves to a valid accumulator should create another valid accumulator.",
)
}
/// Appends one leaf. This will update `frozen_subtree_roots` to store new
/// frozen root nodes and remove old nodes if they are now part of a
/// larger frozen subtree.
fn append_one(
frozen_subtree_roots: &mut Vec<HashValue>,
num_existing_leaves: LeafCount, leaf: HashValue,
) {
// For example, this accumulator originally had N = 7 leaves. Appending
// a leaf is like adding one to this number N: 0b0111 + 1 =
// 0b1000. Every time we carry a bit to the left we merge the
// rightmost two subtrees and compute their parent.
//
// ```text
// A
// / \
// / \
// o o B
// / \ / \ / \
// o o o o o o o
// ```
// First just append the leaf.
frozen_subtree_roots.push(leaf);
// Next, merge the last two subtrees into one. If `num_existing_leaves`
// has N trailing ones, the carry will happen N times.
let num_trailing_ones = (!num_existing_leaves).trailing_zeros();
for _i in 0..num_trailing_ones {
let right_hash =
frozen_subtree_roots.pop().expect("Invalid accumulator.");
let left_hash =
frozen_subtree_roots.pop().expect("Invalid accumulator.");
let parent_hash =
MerkleTreeInternalNode::<H>::new(left_hash, right_hash).hash();
frozen_subtree_roots.push(parent_hash);
}
}
/// Appends a list of new subtrees to the existing accumulator. This is
/// similar to \[`append`\](Accumulator::append) except that the new
/// leaves themselves are not known and they are represented by
/// `subtrees`. As an example, given the following accumulator that
/// currently has 10 leaves, the frozen subtree roots and the new subtrees
/// are annotated below. Note that in this case `subtrees[0]` represents
/// two new leaves `A` and `B`, `subtrees[1]` represents four new leaves
/// `C`, `D`, `E` and `F`, `subtrees[2]` represents four new leaves `G`,
/// `H`, `I` and `J`, and the last `subtrees[3]` represents one new leaf
/// `K`.
///
/// ```text
/// new_root
/// / \
/// / \
/// / \
/// / \
/// / \
/// / \
/// / \
/// / \
/// / \
/// / \
/// / \
/// / \
/// / \
/// old_root o
/// / \ / \
/// / \ / placeholder
/// / \ /
/// / \ /
/// / \ /
/// / \ o
/// / \ / \
/// / \ / \
/// / o / \
/// frozen_subtree_roots[0] / \ / \
/// / \ / \ / \
/// / \ / \ / \
/// o o o subtrees[1] subtrees[2] o
/// / \ / \ / \ / \ / \ / \
/// o o o o frozen_subtree_roots[1] subtrees[0] o o o o o placeholder
/// / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \
/// o o o o o o o o o o A B C D E F G H I J K (subtrees[3]) placeholder
/// ```
pub fn append_subtrees(
&self, subtrees: &[HashValue], num_new_leaves: LeafCount,
) -> Result<Self> {
ensure!(
num_new_leaves <= MAX_ACCUMULATOR_LEAVES - self.num_leaves,
"Too many new leaves. self.num_leaves: {}. num_new_leaves: {}.",
self.num_leaves,
num_new_leaves,
);
if self.num_leaves == 0 {
return Self::new(subtrees.to_vec(), num_new_leaves);
}
let mut current_subtree_roots = self.frozen_subtree_roots.clone();
let mut current_num_leaves = self.num_leaves;
let mut remaining_new_leaves = num_new_leaves;
let mut subtree_iter = subtrees.iter();
// Check if we want to combine a new subtree with the rightmost frozen
// subtree. To do that this new subtree needs to represent
// `rightmost_frozen_subtree_size` leaves, so we need to have at
// least this many new leaves remaining.
let mut rightmost_frozen_subtree_size =
1 << current_num_leaves.trailing_zeros();
while remaining_new_leaves >= rightmost_frozen_subtree_size {
// Note that after combining the rightmost frozen subtree of size X
// with a new subtree, we obtain a subtree of size 2X.
// If there was already a frozen subtree of size 2X, we
// need to carry this process further.
let mut mask = rightmost_frozen_subtree_size;
let mut current_hash = *subtree_iter
.next()
.ok_or_else(|| format_err!("Too few subtrees."))?;
while current_num_leaves & mask != 0 {
let left_hash = current_subtree_roots
.pop()
.expect("This frozen subtree must exist.");
current_hash =
MerkleTreeInternalNode::<H>::new(left_hash, current_hash)
.hash();
mask <<= 1;
}
current_subtree_roots.push(current_hash);
current_num_leaves += rightmost_frozen_subtree_size;
remaining_new_leaves -= rightmost_frozen_subtree_size;
rightmost_frozen_subtree_size = mask;
}
// Now all the new subtrees are smaller than the rightmost frozen
// subtree. We just append all of them. Note that if the number
// of new subtrees does not actually match the number
// of new leaves, `Self::new` below will raise an error.
current_num_leaves += remaining_new_leaves;
current_subtree_roots.extend(subtree_iter);
Self::new(current_subtree_roots, current_num_leaves)
}
/// Returns the root hash of the accumulator.
pub fn root_hash(&self) -> HashValue { self.root_hash }
pub fn version(&self) -> u64 {
if self.num_leaves() == 0 {
0
} else {
self.num_leaves() - 1
}
}
/// Computes the root hash of an accumulator given the frozen subtree roots
/// and the number of leaves in this accumulator.
fn compute_root_hash(
frozen_subtree_roots: &[HashValue], num_leaves: LeafCount,
) -> HashValue {
match frozen_subtree_roots.len() {
0 => return *ACCUMULATOR_PLACEHOLDER_HASH,
1 => return frozen_subtree_roots[0],
_ => (),
}
// The trailing zeros do not matter since anything below the lowest
// frozen subtree is already represented by the subtree roots.
let mut bitmap = num_leaves >> num_leaves.trailing_zeros();
let mut current_hash = *ACCUMULATOR_PLACEHOLDER_HASH;
let mut frozen_subtree_iter = frozen_subtree_roots.iter().rev();
while bitmap > 0 {
current_hash = if bitmap & 1 != 0 {
MerkleTreeInternalNode::<H>::new(
*frozen_subtree_iter
.next()
.expect("This frozen subtree should exist."),
current_hash,
)
} else {
MerkleTreeInternalNode::<H>::new(
current_hash,
*ACCUMULATOR_PLACEHOLDER_HASH,
)
}
.hash();
bitmap >>= 1;
}
current_hash
}
/// Returns the set of frozen subtree roots in this accumulator
pub fn frozen_subtree_roots(&self) -> &Vec<HashValue> {
&self.frozen_subtree_roots
}
/// Returns the total number of leaves in this accumulator.
pub fn num_leaves(&self) -> LeafCount { self.num_leaves }
}
// We manually implement Debug because H (CryptoHasher) does not implement
// Debug.
impl<H> std::fmt::Debug for InMemoryAccumulator<H> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(
f,
"Accumulator {{ frozen_subtree_roots: {:?}, num_leaves: {:?} }}",
self.frozen_subtree_roots, self.num_leaves
)
}
}
impl<H> Default for InMemoryAccumulator<H>
where H: CryptoHasher
{
fn default() -> Self {
Self::new(vec![], 0)
.expect("Constructing empty accumulator should work.")
}
}