1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/
use crate::{
account_address::AccountAddress,
network_address::{NetworkAddress, ParseError},
};
use aes_gcm::{
aead::{generic_array::GenericArray, AeadInPlace, NewAead},
Aes256Gcm,
};
use diem_crypto::{compat::Sha3_256, hkdf::Hkdf};
#[cfg(any(test, feature = "fuzzing"))]
use proptest::prelude::*;
use serde::{Deserialize, Serialize};
use std::mem;
/// The length in bytes of the AES-256-GCM authentication tag.
pub const AES_GCM_TAG_LEN: usize = 16;
/// The length in bytes of the AES-256-GCM nonce.
pub const AES_GCM_NONCE_LEN: usize = 12;
/// The length in bytes of the `shared_val_netaddr_key` and per-validator
/// `derived_key`.
pub const KEY_LEN: usize = 32;
/// Convenient type alias for the `shared_val_netaddr_key` as an array.
pub type Key = [u8; KEY_LEN];
pub type KeyVersion = u32;
/// Constant key + version so we can push `EncNetworkAddress` everywhere
/// without worrying about getting the key in the right places. these will be
/// test-only soon.
// TODO(philiphayes): feature gate for testing/fuzzing only
pub const TEST_SHARED_VAL_NETADDR_KEY: Key = [0u8; KEY_LEN];
pub const TEST_SHARED_VAL_NETADDR_KEY_VERSION: KeyVersion = 0;
/// We salt the HKDF for deriving the account keys to provide application
/// separation.
///
/// Note: modifying this salt is a backwards-incompatible protocol change.
///
/// For readers, the HKDF salt is equal to the following hex string:
/// `"7ffda2ae982a2ebfab2a4da62f76fe33592c85e02445b875f02ded51a520ba2a"` which
/// is also equal to the hash value
/// `SHA3-256(b"DIEM_ENCRYPTED_NETWORK_ADDRESS_SALT")`.
///
/// ```
/// use diem_crypto::hash::HashValue;
/// use diem_types::network_address::encrypted::HKDF_SALT;
///
/// let derived_salt =
/// HashValue::sha3_256_of(b"DIEM_ENCRYPTED_NETWORK_ADDRESS_SALT");
/// assert_eq!(HKDF_SALT.as_ref(), derived_salt.as_ref());
/// ```
pub const HKDF_SALT: [u8; 32] = [
0x7f, 0xfd, 0xa2, 0xae, 0x98, 0x2a, 0x2e, 0xbf, 0xab, 0x2a, 0x4d, 0xa6,
0x2f, 0x76, 0xfe, 0x33, 0x59, 0x2c, 0x85, 0xe0, 0x24, 0x45, 0xb8, 0x75,
0xf0, 0x2d, 0xed, 0x51, 0xa5, 0x20, 0xba, 0x2a,
];
/// An encrypted [`NetworkAddress`].
///
/// ### Threat Model
///
/// Encrypting the on-chain network addresses is purely a defense-in-depth
/// mitigation to minimize attack surface and reduce DDoS attacks on the
/// validators by restricting the visibility of their public-facing network
/// addresses only to other validators.
///
/// These encrypted network addresses are intended to be stored on-chain under
/// each validator's advertised network addresses in their [`ValidatorConfig`]s.
/// All validators share the secret `shared_val_netaddr_key`, though each
/// validator's addresses are encrypted using a per-validator `derived_key`.
///
/// ### Account Key
///
/// ```txt
/// derived_key := HKDF-SHA3-256::extract_and_expand(
/// salt=HKDF_SALT,
/// ikm=shared_val_netaddr_key,
/// info=account_address,
/// output_length=32,
/// )
/// ```
///
/// where `HKDF-SHA3-256::extract_and_expand` is
/// [HKDF extract-and-expand](https://tools.ietf.org/html/rfc5869) with SHA3-256,
/// [`HKDF_SALT`] is a constant salt for application separation,
/// `shared_val_netaddr_key` is the shared secret distributed amongst all the
/// validators, and `account_address` is the specific validator's
/// [`AccountAddress`].
///
/// We use per-validator `derived_key`s to limit the "blast radius" of
/// nonce reuse to each validator, i.e., a validator that accidentally reuses a
/// nonce will only leak information about their network addresses or
/// `derived_key`.
///
/// ### Encryption
///
/// A raw network address, `addr`, is then encrypted using AES-256-GCM like:
///
/// ```txt
/// enc_addr := AES-256-GCM::encrypt(
/// key=derived_key,
/// nonce=nonce,
/// ad=key_version,
/// message=addr,
/// )
/// ```
///
/// where `nonce` is a 96-bit integer as described below, `key_version` is
/// the key version as a u32 big-endian integer, `addr` is the serialized
/// [`NetworkAddress`], and `enc_addr` is the encrypted network address
/// concatenated with the 16-byte authentication tag.
///
/// ### Nonce
///
/// ```txt
/// nonce := seq_num || addr_idx
/// ```
///
/// where `seq_num` is the `seq_num` field as a u64 big-endian integer and
/// `addr_idx` is the index of the encrypted network address in the list of
/// network addresses as a u32 big-endian integer.
///
/// ### Sequence Number
///
/// In order to reduce the probability of nonce reuse, validators should use the
/// sequence number of the rotation transaction in the `seq_num` field.
///
/// ### Key Rotation
///
/// The `EncNetworkAddress` struct contains a `key_version` field, which
/// identifies the specific `shared_val_netaddr_key` used to encrypt/decrypt the
/// `EncNetworkAddress`.
///
/// [`ValidatorConfig`]: https://github.com/diem/diem/blob/main/language/diem-framework/modules/doc/ValidatorConfig.md
#[derive(Clone, Debug, Eq, PartialEq, Deserialize, Serialize)]
pub struct EncNetworkAddress {
key_version: KeyVersion,
seq_num: u64,
#[serde(with = "serde_bytes")]
enc_addr: Vec<u8>,
}
///////////////////////
// EncNetworkAddress //
///////////////////////
impl EncNetworkAddress {
/// ### Panics
///
/// encrypt will panic if `addr` length > 64 GiB.
pub fn encrypt(
addr: NetworkAddress, shared_val_netaddr_key: &Key,
key_version: KeyVersion, account: &AccountAddress, seq_num: u64,
addr_idx: u32,
) -> Result<Self, ParseError> {
// unpack the NetworkAddress into its base Vec<u8>
let mut addr_vec: Vec<u8> = bcs::to_bytes(&addr)?;
let derived_key = Self::derive_key(shared_val_netaddr_key, account);
let aead = Aes256Gcm::new(GenericArray::from_slice(&derived_key));
// nonce := seq_num || addr_idx
//
// concatenate seq_num and addr_idx into a 12-byte AES-GCM nonce. both
// seq_num and addr_idx are big-endian integers.
//
// ex: seq_num = 0x1234, addr_idx = 0x04
// ==> nonce_slice == &[0, 0, 0, 0, 0, 0, 0x12, 0x34, 0, 0, 0, 0x4]
let nonce =
(((seq_num as u128) << 32) | (addr_idx as u128)).to_be_bytes();
let nonce_slice = &nonce[mem::size_of::<u128>() - AES_GCM_NONCE_LEN..];
let nonce_slice = GenericArray::from_slice(nonce_slice);
// the key_version is in-the-clear, so we include it in the integrity
// check using the "associated data"
let ad_buf = key_version.to_be_bytes();
let ad_slice = &ad_buf[..];
// encrypt the raw network address in-place
// note: this can technically panic if the serialized network address
// length is > 64 GiB
let auth_tag = aead
.encrypt_in_place_detached(nonce_slice, ad_slice, &mut addr_vec)
.expect("addr.len() must be <= 64 GiB");
// append the authentication tag
addr_vec.extend_from_slice(auth_tag.as_slice());
Ok(Self {
key_version,
seq_num,
enc_addr: addr_vec,
})
}
pub fn decrypt(
self, shared_val_netaddr_key: &Key, account: &AccountAddress,
addr_idx: u32,
) -> Result<NetworkAddress, ParseError> {
let key_version = self.key_version;
let seq_num = self.seq_num;
let mut enc_addr = self.enc_addr;
// ciphertext is too small to even contain the authentication tag, so it
// must be invalid.
if enc_addr.len() < AES_GCM_TAG_LEN {
return Err(ParseError::DecryptError);
}
let derived_key = Self::derive_key(shared_val_netaddr_key, account);
let aead = Aes256Gcm::new(GenericArray::from_slice(&derived_key));
// nonce := seq_num || addr_idx
//
// concatenate seq_num and addr_idx into a 12-byte AES-GCM nonce. both
// seq_num and addr_idx are big-endian integers.
//
// ex: seq_num = 0x1234, addr_idx = 0x04
// ==> nonce_slice == &[0, 0, 0, 0, 0, 0, 0x12, 0x34, 0, 0, 0, 0x4]
let nonce =
(((seq_num as u128) << 32) | (addr_idx as u128)).to_be_bytes();
let nonce_slice = &nonce[mem::size_of::<u128>() - AES_GCM_NONCE_LEN..];
let nonce_slice = GenericArray::from_slice(nonce_slice);
// the key_version is in-the-clear, so we include it in the integrity
// check using the "additonal data"
let ad_buf = key_version.to_be_bytes();
let ad_slice = &ad_buf[..];
// split buffer into separate ciphertext and authentication tag slices
let auth_tag_offset = enc_addr.len() - AES_GCM_TAG_LEN;
let (enc_addr_slice, auth_tag_slice) =
enc_addr.split_at_mut(auth_tag_offset);
let auth_tag_slice = GenericArray::from_slice(auth_tag_slice);
aead.decrypt_in_place_detached(
nonce_slice,
ad_slice,
enc_addr_slice,
auth_tag_slice,
)
.map_err(|_| ParseError::DecryptError)?;
// remove the auth tag suffix, leaving just the decrypted network
// address
enc_addr.truncate(auth_tag_offset);
bcs::from_bytes(&enc_addr).map_err(|e| e.into())
}
/// Given the shared `shared_val_netaddr_key`, derive the per-validator
/// `derived_key`.
fn derive_key(
shared_val_netaddr_key: &Key, account: &AccountAddress,
) -> Vec<u8> {
let salt = Some(HKDF_SALT.as_ref());
let info = Some(account.as_ref());
Hkdf::<Sha3_256>::extract_then_expand(salt, shared_val_netaddr_key, info, KEY_LEN).expect(
"HKDF_SHA3_256 extract_then_expand is infallible here since all inputs \
have valid and well-defined lengths enforced by the type system",
)
}
pub fn key_version(&self) -> KeyVersion { self.key_version }
pub fn seq_num(&self) -> u64 { self.seq_num }
}
#[cfg(any(test, feature = "fuzzing"))]
impl Arbitrary for EncNetworkAddress {
type Parameters = ();
type Strategy = BoxedStrategy<Self>;
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
let shared_val_netaddr_key = TEST_SHARED_VAL_NETADDR_KEY;
let key_version = TEST_SHARED_VAL_NETADDR_KEY_VERSION;
let account = AccountAddress::ZERO;
let seq_num = 0;
let addr_idx = 0;
any::<NetworkAddress>()
.prop_map(move |addr| {
EncNetworkAddress::encrypt(
addr,
&shared_val_netaddr_key,
key_version,
&account,
seq_num,
addr_idx,
)
.unwrap()
})
.boxed()
}
}
///////////
// Tests //
///////////
#[cfg(test)]
mod test {
use super::*;
// Ensure that modifying the ciphertext or associated data causes a
// decryption error.
#[test]
fn expect_decryption_failures() {
let shared_val_netaddr_key = TEST_SHARED_VAL_NETADDR_KEY;
let key_version = TEST_SHARED_VAL_NETADDR_KEY_VERSION;
let account = AccountAddress::ZERO;
let seq_num = 0x4589;
let addr_idx = 123;
let addr = NetworkAddress::mock();
let enc_addr = addr
.clone()
.encrypt(
&shared_val_netaddr_key,
key_version,
&account,
seq_num,
addr_idx,
)
.unwrap();
// we expect decrypting a properly encrypted address to work
let dec_addr = enc_addr
.clone()
.decrypt(&shared_val_netaddr_key, &account, addr_idx)
.unwrap();
assert_eq!(addr, dec_addr);
// modifying the seq_num should cause decryption failure
let mut malicious_enc_addr = enc_addr.clone();
malicious_enc_addr.seq_num = 1234;
malicious_enc_addr
.decrypt(&shared_val_netaddr_key, &account, addr_idx)
.unwrap_err();
// modifying the key_version should cause decryption failure
let mut malicious_enc_addr = enc_addr.clone();
malicious_enc_addr.key_version = 9999;
malicious_enc_addr
.decrypt(&shared_val_netaddr_key, &account, addr_idx)
.unwrap_err();
// modifying the auth_tag should cause decryption failure
let mut malicious_enc_addr = enc_addr.clone();
let buf = &mut malicious_enc_addr.enc_addr;
let buf_len = buf.len();
buf[buf_len - 1] ^= 0x55;
malicious_enc_addr
.decrypt(&shared_val_netaddr_key, &account, addr_idx)
.unwrap_err();
// modifying the enc_addr ciphertext should cause decryption failure
let mut malicious_enc_addr = enc_addr.clone();
malicious_enc_addr.enc_addr = vec![0x42u8; 123];
malicious_enc_addr
.decrypt(&shared_val_netaddr_key, &account, addr_idx)
.unwrap_err();
// modifying the account address should cause decryption failure
let malicious_account =
AccountAddress::new([0x33; AccountAddress::LENGTH]);
enc_addr
.clone()
.decrypt(&shared_val_netaddr_key, &malicious_account, addr_idx)
.unwrap_err();
// modifying the shared_val_netaddr_key should cause decryption failure
let malicious_shared_val_netaddr_key = [0x88; KEY_LEN];
enc_addr
.clone()
.decrypt(&malicious_shared_val_netaddr_key, &account, addr_idx)
.unwrap_err();
// modifying the addr_idx should cause decryption failure
let malicious_addr_idx = 999;
enc_addr
.decrypt(&shared_val_netaddr_key, &account, malicious_addr_idx)
.unwrap_err();
}
proptest! {
#[test]
fn encrypt_decrypt_roundtrip(
addr in any::<NetworkAddress>(),
) {
let shared_val_netaddr_key = TEST_SHARED_VAL_NETADDR_KEY;
let key_version = TEST_SHARED_VAL_NETADDR_KEY_VERSION;
let account = AccountAddress::ZERO;
let seq_num = 0;
let addr_idx = 0;
let enc_addr = addr.clone().encrypt(&shared_val_netaddr_key, key_version, &account, seq_num, addr_idx);
let dec_addr = enc_addr.unwrap().decrypt(&shared_val_netaddr_key, &account, addr_idx);
assert_eq!(addr, dec_addr.unwrap());
}
#[test]
fn encrypt_decrypt_roundtrip_all_parameters(
shared_val_netaddr_key in any::<Key>(),
key_version in any::<KeyVersion>(),
account in any::<[u8; AccountAddress::LENGTH]>(),
seq_num in any::<u64>(),
addr_idx in any::<u32>(),
addr in any::<NetworkAddress>(),
) {
let account = AccountAddress::new(account);
let enc_addr = addr.clone().encrypt(&shared_val_netaddr_key, key_version, &account, seq_num, addr_idx);
let dec_addr = enc_addr.unwrap().decrypt(&shared_val_netaddr_key, &account, addr_idx);
assert_eq!(addr, dec_addr.unwrap());
}
}
}