1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/
//! This module implements the functionality to restore a `JellyfishMerkleTree`
//! from small chunks of accounts.
#[cfg(test)]
mod restore_test;
use crate::{
nibble_path::{NibbleIterator, NibblePath},
node_type::{
get_child_and_sibling_half_start, Child, Children, InternalNode,
LeafNode, Node, NodeKey,
},
NibbleExt, NodeBatch, TreeReader, TreeWriter, ROOT_NIBBLE_HEIGHT,
};
use anyhow::{bail, ensure, format_err, Result};
use diem_crypto::{
hash::{CryptoHash, SPARSE_MERKLE_PLACEHOLDER_HASH},
HashValue,
};
use diem_nibble::Nibble;
use diem_types::{
proof::{SparseMerkleInternalNode, SparseMerkleRangeProof},
transaction::Version,
};
use mirai_annotations::*;
use std::sync::Arc;
#[derive(Clone, Debug, Eq, PartialEq)]
enum ChildInfo<V> {
/// This child is an internal node. The hash of the internal node is stored
/// here if it is known, otherwise it is `None`. In the process of
/// restoring a tree, we will only know the hash of an internal node
/// after we see all the keys that share the same prefix.
Internal { hash: Option<HashValue> },
/// This child is a leaf node.
Leaf { node: LeafNode<V> },
}
impl<V> ChildInfo<V>
where V: crate::Value
{
/// Converts `self` to a child, assuming the hash is known if it's an
/// internal node.
fn into_child(self, version: Version) -> Child {
match self {
Self::Internal { hash } => {
Child::new(
hash.expect("Must have been initialized."),
version,
false, /* is_leaf */
)
}
Self::Leaf { node } => {
Child::new(node.hash(), version, true /* is_leaf */)
}
}
}
}
#[derive(Clone, Debug)]
struct InternalInfo<V> {
/// The node key of this internal node.
node_key: NodeKey,
/// The existing children. Every time a child appears, the corresponding
/// position will be set to `Some`.
children: [Option<ChildInfo<V>>; 16],
}
impl<V> InternalInfo<V>
where V: crate::Value
{
/// Creates an empty internal node with no children.
fn new_empty(node_key: NodeKey) -> Self {
Self {
node_key,
children: Default::default(),
}
}
fn set_child(&mut self, index: usize, child_info: ChildInfo<V>) {
precondition!(index < 16);
self.children[index] = Some(child_info);
}
/// Converts `self` to an internal node, assuming all of its children are
/// already known and fully initialized.
fn into_internal_node(
mut self, version: Version,
) -> (NodeKey, InternalNode) {
let mut children = Children::new();
// Calling `into_iter` on an array is equivalent to calling `iter`:
// https://github.com/rust-lang/rust/issues/25725. So we use `iter_mut` and `take`.
for (index, child_info_option) in self.children.iter_mut().enumerate() {
if let Some(child_info) = child_info_option.take() {
children.insert(
(index as u8).into(),
child_info.into_child(version),
);
}
}
(self.node_key, InternalNode::new(children))
}
}
pub struct JellyfishMerkleRestore<V> {
/// The underlying storage.
store: Arc<dyn TreeWriter<V>>,
/// The version of the tree we are restoring.
version: Version,
/// The nodes we have partially restored. Each `partial_nodes[i-1]` is the
/// parent of `partial_nodes[i]`. If a node `partial_nodes[i-1]` has
/// multiple children, only the rightmost known child will appear here
/// as `partial_nodes[i]`, because any other children on the left would
/// have been frozen.
///
/// At any point in time, the structure looks like the following:
///
/// ```text
/// +----+----+----+----+----+----+----+----+
/// | | | | | | | | C | partial_nodes[0]
/// +----+----+----+----+----+----+----+----+
/// | | |
/// | | |
/// | | |
/// v v v
/// Frozen Frozen +----+----+----+----+----+----+----+----+
/// | | | | B | | | A | | partial_nodes[1]
/// +----+----+----+----+----+----+----+----+
/// | |
/// | |
/// | |
/// v v
/// Frozen Previously inserted account
/// ```
///
/// We insert the accounts from left to right. So if the next account
/// appears at position `A`, it will cause the leaf at position `B` to
/// be frozen. If it appears at position `B`, it might cause a few
/// internal nodes to be created additionally. If it appears at position
/// `C`, it will also cause `partial_nodes[1]` to be added to
/// `frozen_nodes` as an internal node and be removed from
/// `partial_nodes`.
partial_nodes: Vec<InternalInfo<V>>,
/// The nodes that have been fully restored and are ready to be written to
/// storage.
frozen_nodes: NodeBatch<V>,
/// The most recently added leaf. This is used to ensure the keys come in
/// increasing order and do proof verification.
previous_leaf: Option<LeafNode<V>>,
/// The number of keys we have received since the most recent restart.
num_keys_received: u64,
/// When the restoration process finishes, we expect the tree to have this
/// root hash.
expected_root_hash: HashValue,
}
impl<V> JellyfishMerkleRestore<V>
where V: crate::Value
{
pub fn new<D: 'static + TreeReader<V> + TreeWriter<V>>(
store: Arc<D>, version: Version, expected_root_hash: HashValue,
) -> Result<Self> {
let tree_reader = Arc::clone(&store);
let (partial_nodes, previous_leaf) =
if let Some((node_key, leaf_node)) =
tree_reader.get_rightmost_leaf()?
{
// TODO: confirm rightmost leaf is at the desired version
// If the system crashed in the middle of the previous
// restoration attempt, we need to recover the
// partial nodes to the state right before the crash.
(
Self::recover_partial_nodes(
tree_reader.as_ref(),
version,
node_key,
)?,
Some(leaf_node),
)
} else {
(
vec![InternalInfo::new_empty(NodeKey::new_empty_path(
version,
))],
None,
)
};
Ok(Self {
store,
version,
partial_nodes,
frozen_nodes: NodeBatch::new(),
previous_leaf,
num_keys_received: 0,
expected_root_hash,
})
}
pub fn new_overwrite<D: 'static + TreeWriter<V>>(
store: Arc<D>, version: Version, expected_root_hash: HashValue,
) -> Result<Self> {
Ok(Self {
store,
version,
partial_nodes: vec![InternalInfo::new_empty(
NodeKey::new_empty_path(version),
)],
frozen_nodes: NodeBatch::new(),
previous_leaf: None,
num_keys_received: 0,
expected_root_hash,
})
}
/// Recovers partial nodes from storage. We do this by looking at all the
/// ancestors of the rightmost leaf. The ones do not exist in storage
/// are the partial nodes.
fn recover_partial_nodes(
store: &dyn TreeReader<V>, version: Version,
rightmost_leaf_node_key: NodeKey,
) -> Result<Vec<InternalInfo<V>>> {
ensure!(
rightmost_leaf_node_key.nibble_path().num_nibbles() > 0,
"Root node would not be written until entire restoration process has completed \
successfully.",
);
// Start from the parent of the rightmost leaf. If this internal node
// exists in storage, it is not a partial node. Go to the parent
// node and repeat until we see a node that does not exist. This
// node and all its ancestors will be the partial nodes.
let mut node_key = rightmost_leaf_node_key.gen_parent_node_key();
while store.get_node_option(&node_key)?.is_some() {
node_key = node_key.gen_parent_node_key();
}
// Next we reconstruct all the partial nodes up to the root node,
// starting from the bottom. For all of them, we scan all its
// possible child positions and see if there is one at
// each position. If the node is not the bottom one, there is
// additionally a partial node child at the position
// `previous_child_index`.
let mut partial_nodes = vec![];
// Initialize `previous_child_index` to `None` for the first iteration
// of the loop so the code below treats it differently.
let mut previous_child_index = None;
loop {
let mut internal_info = InternalInfo::new_empty(node_key.clone());
for i in 0..previous_child_index.unwrap_or(16) {
let child_node_key =
node_key.gen_child_node_key(version, (i as u8).into());
if let Some(node) = store.get_node_option(&child_node_key)? {
let child_info = match node {
Node::Internal(internal_node) => ChildInfo::Internal {
hash: Some(internal_node.hash()),
},
Node::Leaf(leaf_node) => {
ChildInfo::Leaf { node: leaf_node }
}
Node::Null => {
bail!("Null node should not appear in storage.")
}
};
internal_info.set_child(i, child_info);
}
}
// If this is not the lowest partial node, it will have a partial
// node child at `previous_child_index`. Set the hash of
// this child to `None` because it is a partial node and
// we do not know its hash yet. For the lowest partial node, we just
// find all its known children from storage in the loop above.
if let Some(index) = previous_child_index {
internal_info
.set_child(index, ChildInfo::Internal { hash: None });
}
partial_nodes.push(internal_info);
if node_key.nibble_path().num_nibbles() == 0 {
break;
}
previous_child_index =
node_key.nibble_path().last().map(|x| u8::from(x) as usize);
node_key = node_key.gen_parent_node_key();
}
partial_nodes.reverse();
Ok(partial_nodes)
}
/// Restores a chunk of accounts. This function will verify that the given
/// chunk is correct using the proof and root hash, then write things to
/// storage. If the chunk is invalid, an error will be returned and
/// nothing will be written to storage.
pub fn add_chunk(
&mut self, chunk: Vec<(HashValue, V)>, proof: SparseMerkleRangeProof,
) -> Result<()> {
ensure!(!chunk.is_empty(), "Should not add empty chunks.");
for (key, value) in chunk {
if let Some(ref prev_leaf) = self.previous_leaf {
ensure!(
key > prev_leaf.account_key(),
"Account keys must come in increasing order.",
)
}
self.add_one(key, value.clone());
self.previous_leaf.replace(LeafNode::new(key, value));
self.num_keys_received += 1;
}
// Verify what we have added so far is all correct.
self.verify(proof)?;
// Write the frozen nodes to storage.
self.store.write_node_batch(&self.frozen_nodes)?;
self.frozen_nodes.clear();
Ok(())
}
/// Restores one account.
fn add_one(&mut self, new_key: HashValue, new_value: V) {
let nibble_path = NibblePath::new(new_key.to_vec());
let mut nibbles = nibble_path.nibbles();
for i in 0..ROOT_NIBBLE_HEIGHT {
let child_index =
u8::from(nibbles.next().expect("This nibble must exist."))
as usize;
match self.partial_nodes[i].children[child_index] {
Some(ref child_info) => {
// If there exists an internal node at this position, we
// just continue the loop with the next
// nibble. Here we deal with the leaf case.
if let ChildInfo::Leaf { node } = child_info {
assert_eq!(
i,
self.partial_nodes.len() - 1,
"If we see a leaf, there will be no more partial internal nodes on \
lower level, since they would have been frozen.",
);
let existing_leaf = node.clone();
self.insert_at_leaf(
child_index,
existing_leaf,
new_key,
new_value,
nibbles,
);
break;
}
}
None => {
// This means that we are going to put a leaf in this
// position. For all the descendants on
// the left, they are now frozen.
self.freeze(i + 1);
// Mark this position as a leaf child.
self.partial_nodes[i].set_child(
child_index,
ChildInfo::Leaf {
node: LeafNode::new(new_key, new_value),
},
);
// We do not add this leaf node to self.frozen_nodes because
// we don't know its node key yet. We
// will know its node key when the next account comes.
break;
}
}
}
}
/// Inserts a new account at the position of the existing leaf node. We may
/// need to create multiple internal nodes depending on the length of
/// the common prefix of the existing key and the new key.
fn insert_at_leaf(
&mut self, child_index: usize, existing_leaf: LeafNode<V>,
new_key: HashValue, new_value: V,
mut remaining_nibbles: NibbleIterator<'_>,
) {
let num_existing_partial_nodes = self.partial_nodes.len();
// The node at this position becomes an internal node. Since we may
// insert more nodes at this position in the future, we do not
// know its hash yet.
self.partial_nodes[num_existing_partial_nodes - 1]
.set_child(child_index, ChildInfo::Internal { hash: None });
// Next we build the new internal nodes from top to bottom. All these
// internal node except the bottom one will now have a single
// internal node child.
let common_prefix_len = existing_leaf
.account_key()
.common_prefix_nibbles_len(new_key);
for _ in num_existing_partial_nodes..common_prefix_len {
let visited_nibbles = remaining_nibbles.visited_nibbles().collect();
let next_nibble =
remaining_nibbles.next().expect("This nibble must exist.");
let new_node_key = NodeKey::new(self.version, visited_nibbles);
let mut internal_info = InternalInfo::new_empty(new_node_key);
internal_info.set_child(
u8::from(next_nibble) as usize,
ChildInfo::Internal { hash: None },
);
self.partial_nodes.push(internal_info);
}
// The last internal node will have two leaf node children.
let visited_nibbles = remaining_nibbles.visited_nibbles().collect();
let new_node_key = NodeKey::new(self.version, visited_nibbles);
let mut internal_info = InternalInfo::new_empty(new_node_key);
// Next we put the existing leaf as a child of this internal node.
let existing_child_index =
existing_leaf.account_key().get_nibble(common_prefix_len);
internal_info.set_child(
u8::from(existing_child_index) as usize,
ChildInfo::Leaf {
node: existing_leaf,
},
);
// Do not set the new child for now. We always call `freeze` first, then
// set the new child later, because this way it's easier in
// `freeze` to find the correct leaf to freeze -- it's always
// the rightmost leaf on the lowest level.
self.partial_nodes.push(internal_info);
self.freeze(self.partial_nodes.len());
// Now we set the new child.
let new_child_index = new_key.get_nibble(common_prefix_len);
assert!(
new_child_index > existing_child_index,
"New leaf must be on the right.",
);
self.partial_nodes
.last_mut()
.expect("This node must exist.")
.set_child(
u8::from(new_child_index) as usize,
ChildInfo::Leaf {
node: LeafNode::new(new_key, new_value),
},
);
}
/// Puts the nodes that will not be changed later in `self.frozen_nodes`.
fn freeze(&mut self, num_remaining_partial_nodes: usize) {
self.freeze_previous_leaf();
self.freeze_internal_nodes(num_remaining_partial_nodes);
}
/// Freezes the previously added leaf node. It should always be the
/// rightmost leaf node on the lowest level, inserted in the previous
/// `add_one` call.
fn freeze_previous_leaf(&mut self) {
// If this is the very first key, there is no previous leaf to freeze.
if self.num_keys_received == 0 {
return;
}
let last_node = self
.partial_nodes
.last()
.expect("Must have at least one partial node.");
let rightmost_child_index = last_node
.children
.iter()
.rposition(|x| x.is_some())
.expect("Must have at least one child.");
match last_node.children[rightmost_child_index] {
Some(ChildInfo::Leaf { ref node }) => {
let child_node_key = last_node
.node_key
.gen_child_node_key(self.version, (rightmost_child_index as u8).into());
self.frozen_nodes
.insert(child_node_key, node.clone().into());
}
_ => panic!("Must have at least one child and must not have further internal nodes."),
}
}
/// Freeze extra internal nodes. Only `num_remaining_nodes` partial internal
/// nodes will be kept and the ones on the lower level will be frozen.
fn freeze_internal_nodes(&mut self, num_remaining_nodes: usize) {
while self.partial_nodes.len() > num_remaining_nodes {
let last_node =
self.partial_nodes.pop().expect("This node must exist.");
let (node_key, internal_node) =
last_node.into_internal_node(self.version);
// Keep the hash of this node before moving it into `frozen_nodes`,
// so we can update its parent later.
let node_hash = internal_node.hash();
self.frozen_nodes.insert(node_key, internal_node.into());
// Now that we have computed the hash of the internal node above, we
// will also update its parent unless it is root node.
if let Some(parent_node) = self.partial_nodes.last_mut() {
// This internal node must be the rightmost child of its parent
// at the moment.
let rightmost_child_index = parent_node
.children
.iter()
.rposition(|x| x.is_some())
.expect("Must have at least one child.");
match parent_node.children[rightmost_child_index] {
Some(ChildInfo::Internal { ref mut hash }) => {
assert_eq!(hash.replace(node_hash), None);
}
_ => panic!(
"Must have at least one child and the rightmost child must not be a leaf."
),
}
}
}
}
/// Verifies that all accounts that have been added so far (from the
/// leftmost one to `self.previous_leaf`) are correct, i.e., we are able
/// to construct `self.expected_root_hash` by combining all existing
/// accounts and `proof`.
#[allow(clippy::collapsible_if)]
fn verify(&self, proof: SparseMerkleRangeProof) -> Result<()> {
let previous_leaf = self
.previous_leaf
.as_ref()
.expect("The previous leaf must exist.");
let previous_key = previous_leaf.account_key();
// If we have all siblings on the path from root to `previous_key`, we
// should be able to compute the root hash. The siblings on the
// right are already in the proof. Now we compute the siblings
// on the left side, which represent all the accounts that have ever
// been added.
let mut left_siblings = vec![];
// The following process might add some extra placeholder siblings on
// the left, but it is nontrivial to determine when the loop
// should stop. So instead we just add these siblings for now
// and get rid of them in the next step.
let mut num_visited_right_siblings = 0;
for (i, bit) in previous_key.iter_bits().enumerate() {
if bit {
// This node is a right child and there should be a sibling on
// the left.
let sibling = if i >= self.partial_nodes.len() * 4 {
*SPARSE_MERKLE_PLACEHOLDER_HASH
} else {
Self::compute_left_sibling(
&self.partial_nodes[i / 4],
previous_key.get_nibble(i / 4),
(3 - i % 4) as u8,
)
};
left_siblings.push(sibling);
} else {
// This node is a left child and there should be a sibling on
// the right.
num_visited_right_siblings += 1;
}
}
ensure!(
num_visited_right_siblings >= proof.right_siblings().len(),
"Too many right siblings in the proof.",
);
// Now we remove any extra placeholder siblings at the bottom. We keep
// removing the last sibling if 1) it's a placeholder 2) it's a
// sibling on the left.
for bit in previous_key.iter_bits().rev() {
if bit {
if *left_siblings.last().expect("This sibling must exist.")
== *SPARSE_MERKLE_PLACEHOLDER_HASH
{
left_siblings.pop();
} else {
break;
}
} else if num_visited_right_siblings > proof.right_siblings().len()
{
num_visited_right_siblings -= 1;
} else {
break;
}
}
// Compute the root hash now that we have all the siblings.
let num_siblings = left_siblings.len() + proof.right_siblings().len();
let mut left_sibling_iter = left_siblings.iter().rev();
let mut right_sibling_iter = proof.right_siblings().iter();
let mut current_hash = previous_leaf.hash();
for bit in previous_key
.iter_bits()
.rev()
.skip(HashValue::LENGTH_IN_BITS - num_siblings)
{
let (left_hash, right_hash) = if bit {
(
*left_sibling_iter
.next()
.ok_or_else(|| format_err!("Missing left sibling."))?,
current_hash,
)
} else {
(
current_hash,
*right_sibling_iter
.next()
.ok_or_else(|| format_err!("Missing right sibling."))?,
)
};
current_hash =
SparseMerkleInternalNode::new(left_hash, right_hash).hash();
}
ensure!(
current_hash == self.expected_root_hash,
"Root hashes do not match. Actual root hash: {:x}. Expected root hash: {:x}.",
current_hash,
self.expected_root_hash,
);
Ok(())
}
/// Computes the sibling on the left for the `n`-th child.
fn compute_left_sibling(
partial_node: &InternalInfo<V>, n: Nibble, height: u8,
) -> HashValue {
assert!(height < 4);
let width = 1usize << height;
let start = get_child_and_sibling_half_start(n, height).1 as usize;
Self::compute_left_sibling_impl(
&partial_node.children[start..start + width],
)
.0
}
/// Returns the hash for given portion of the subtree and whether this part
/// is a leaf node.
fn compute_left_sibling_impl(
children: &[Option<ChildInfo<V>>],
) -> (HashValue, bool) {
assert!(!children.is_empty());
let num_children = children.len();
assert!(num_children.is_power_of_two());
if num_children == 1 {
match &children[0] {
Some(ChildInfo::Internal { hash }) => {
(*hash.as_ref().expect("The hash must be known."), false)
}
Some(ChildInfo::Leaf { node }) => (node.hash(), true),
None => (*SPARSE_MERKLE_PLACEHOLDER_HASH, true),
}
} else {
let (left_hash, left_is_leaf) =
Self::compute_left_sibling_impl(&children[..num_children / 2]);
let (right_hash, right_is_leaf) =
Self::compute_left_sibling_impl(&children[num_children / 2..]);
if left_hash == *SPARSE_MERKLE_PLACEHOLDER_HASH && right_is_leaf {
(right_hash, true)
} else if left_is_leaf
&& right_hash == *SPARSE_MERKLE_PLACEHOLDER_HASH
{
(left_hash, true)
} else {
(
SparseMerkleInternalNode::new(left_hash, right_hash).hash(),
false,
)
}
}
}
/// Finishes the restoration process. This tells the code that there is no
/// more account, otherwise we can not freeze the rightmost leaf and its
/// ancestors.
pub fn finish(mut self) -> Result<()> {
// Deal with the special case when the entire tree has a single leaf.
if self.partial_nodes.len() == 1 {
let mut num_children = 0;
let mut leaf = None;
for i in 0..16 {
if let Some(ref child_info) = self.partial_nodes[0].children[i]
{
num_children += 1;
if let ChildInfo::Leaf { node } = child_info {
leaf = Some(node.clone());
}
}
}
if num_children == 1 {
if let Some(node) = leaf {
let node_key = NodeKey::new_empty_path(self.version);
assert!(self.frozen_nodes.is_empty());
self.frozen_nodes.insert(node_key, node.into());
self.store.write_node_batch(&self.frozen_nodes)?;
return Ok(());
}
}
}
self.freeze(0);
self.store.write_node_batch(&self.frozen_nodes)
}
}