1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0

// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/

//! Node types of [`JellyfishMerkleTree`](crate::JellyfishMerkleTree)
//!
//! This module defines two types of Jellyfish Merkle tree nodes:
//! [`InternalNode`] and [`LeafNode`] as building blocks of a 256-bit
//! [`JellyfishMerkleTree`](crate::JellyfishMerkleTree). [`InternalNode`]
//! represents a 4-level binary tree to optimize for IOPS: it compresses a tree
//! with 31 nodes into one node with 16 chidren at the lowest level.
//! [`LeafNode`] stores the full key and the value associated.

#[cfg(test)]
mod node_type_test;

use crate::{
    metrics::{
        DIEM_JELLYFISH_INTERNAL_ENCODED_BYTES,
        DIEM_JELLYFISH_LEAF_ENCODED_BYTES,
    },
    nibble_path::NibblePath,
    ROOT_NIBBLE_HEIGHT,
};
use anyhow::{ensure, Context, Result};
use byteorder::{BigEndian, LittleEndian, ReadBytesExt, WriteBytesExt};
use diem_crypto::{
    hash::{CryptoHash, SPARSE_MERKLE_PLACEHOLDER_HASH},
    HashValue,
};
use diem_nibble::Nibble;
use diem_types::{
    proof::{SparseMerkleInternalNode, SparseMerkleLeafNode},
    transaction::Version,
};
use num_derive::{FromPrimitive, ToPrimitive};
use num_traits::cast::FromPrimitive;
#[cfg(any(test, feature = "fuzzing"))]
use proptest::{collection::hash_map, prelude::*};
#[cfg(any(test, feature = "fuzzing"))]
use proptest_derive::Arbitrary;
use serde::{Deserialize, Serialize};
use std::{
    collections::hash_map::HashMap,
    io::{prelude::*, Cursor, Read, SeekFrom, Write},
    mem::size_of,
};
use thiserror::Error;

/// The unique key of each node.
#[derive(Clone, Debug, Hash, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(any(test, feature = "fuzzing"), derive(Arbitrary))]
pub struct NodeKey {
    // The version at which the node is created.
    version: Version,
    // The nibble path this node represents in the tree.
    nibble_path: NibblePath,
}

impl NodeKey {
    /// Creates a new `NodeKey`.
    pub fn new(version: Version, nibble_path: NibblePath) -> Self {
        Self {
            version,
            nibble_path,
        }
    }

    /// A shortcut to generate a node key consisting of a version and an empty
    /// nibble path.
    pub fn new_empty_path(version: Version) -> Self {
        Self::new(version, NibblePath::new(vec![]))
    }

    /// Gets the version.
    pub fn version(&self) -> Version { self.version }

    /// Gets the nibble path.
    pub fn nibble_path(&self) -> &NibblePath { &self.nibble_path }

    /// Generates a child node key based on this node key.
    pub fn gen_child_node_key(&self, version: Version, n: Nibble) -> Self {
        let mut node_nibble_path = self.nibble_path().clone();
        node_nibble_path.push(n);
        Self::new(version, node_nibble_path)
    }

    /// Generates parent node key at the same version based on this node key.
    pub fn gen_parent_node_key(&self) -> Self {
        let mut node_nibble_path = self.nibble_path().clone();
        assert!(
            node_nibble_path.pop().is_some(),
            "Current node key is root.",
        );
        Self::new(self.version, node_nibble_path)
    }

    /// Sets the version to the given version.
    pub fn set_version(&mut self, version: Version) { self.version = version; }

    /// Serializes to bytes for physical storage enforcing the same order as
    /// that in memory.
    pub fn encode(&self) -> Result<Vec<u8>> {
        let mut out = vec![];
        out.write_u64::<BigEndian>(self.version())?;
        out.write_u8(self.nibble_path().num_nibbles() as u8)?;
        out.write_all(self.nibble_path().bytes())?;
        Ok(out)
    }

    /// Recovers from serialized bytes in physical storage.
    pub fn decode(val: &[u8]) -> Result<NodeKey> {
        let mut reader = Cursor::new(val);
        let version = reader.read_u64::<BigEndian>()?;
        let num_nibbles = reader.read_u8()? as usize;
        ensure!(
            num_nibbles <= ROOT_NIBBLE_HEIGHT,
            "Invalid number of nibbles: {}",
            num_nibbles,
        );
        let mut nibble_bytes = Vec::with_capacity((num_nibbles + 1) / 2);
        reader.read_to_end(&mut nibble_bytes)?;
        ensure!(
            (num_nibbles + 1) / 2 == nibble_bytes.len(),
            "encoded num_nibbles {} mismatches nibble path bytes {:?}",
            num_nibbles,
            nibble_bytes
        );
        let nibble_path = if num_nibbles % 2 == 0 {
            NibblePath::new(nibble_bytes)
        } else {
            let padding = nibble_bytes.last().unwrap() & 0x0f;
            ensure!(
                padding == 0,
                "Padding nibble expected to be 0, got: {}",
                padding,
            );
            NibblePath::new_odd(nibble_bytes)
        };
        Ok(NodeKey::new(version, nibble_path))
    }
}

/// Each child of [`InternalNode`] encapsulates a nibble forking at this node.
#[derive(Clone, Debug, Eq, PartialEq)]
#[cfg_attr(any(test, feature = "fuzzing"), derive(Arbitrary))]
pub struct Child {
    // The hash value of this child node.
    pub hash: HashValue,
    // `version`, the `nibble_path` of the ['NodeKey`] of this [`InternalNode`]
    // the child belongs to and the child's index constitute the
    // [`NodeKey`] to uniquely identify this child node from the storage.
    // Used by `[`NodeKey::gen_child_node_key`].
    pub version: Version,
    // Whether the child is a leaf node.
    pub is_leaf: bool,
}

impl Child {
    pub fn new(hash: HashValue, version: Version, is_leaf: bool) -> Self {
        Self {
            hash,
            version,
            is_leaf,
        }
    }
}

/// [`Children`] is just a collection of children belonging to a
/// [`InternalNode`], indexed from 0 to 15, inclusive.
pub(crate) type Children = HashMap<Nibble, Child>;

/// Represents a 4-level subtree with 16 children at the bottom level.
/// Theoretically, this reduces IOPS to query a tree by 4x since we compress 4
/// levels in a standard Merkle tree into 1 node. Though we choose the same
/// internal node structure as that of Patricia Merkle tree, the root hash
/// computation logic is similar to a 4-level sparse Merkle tree except for some
/// customizations. See the `CryptoHash` trait implementation below for details.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct InternalNode {
    // Up to 16 children.
    children: Children,
}

/// Computes the hash of internal node according to
/// [`JellyfishTree`](crate::JellyfishTree) data structure in the logical view.
/// `start` and `nibble_height` determine a subtree whose root hash we want to
/// get. For an internal node with 16 children at the bottom level, we compute
/// the root hash of it as if a full binary Merkle tree with 16 leaves as below:
///
/// ```text
///   4 ->              +------ root hash ------+
///                     |                       |
///   3 ->        +---- # ----+           +---- # ----+
///               |           |           |           |
///   2 ->        #           #           #           #
///             /   \       /   \       /   \       /   \
///   1 ->     #     #     #     #     #     #     #     #
///           / \   / \   / \   / \   / \   / \   / \   / \
///   0 ->   0   1 2   3 4   5 6   7 8   9 A   B C   D E   F
///   ^
/// height
/// ```
///
/// As illustrated above, at nibble height 0, `0..F` in hex denote 16 chidren
/// hashes.  Each `#` means the hash of its two direct children, which will be
/// used to generate the hash of its parent with the hash of its sibling.
/// Finally, we can get the hash of this internal node.
///
/// However, if an internal node doesn't have all 16 chidren exist at height 0
/// but just a few of them, we have a modified hashing rule on top of what is
/// stated above: 1. From top to bottom, a node will be replaced by a leaf child
/// if the subtree rooted at this node has only one child at height 0 and it is
/// a leaf child. 2. From top to bottom, a node will be replaced by the
/// placeholder node if the subtree rooted at this node doesn't have any child
/// at height 0. For example, if an internal node has 3 leaf children at index
/// 0, 3, 8, respectively, and 1 internal node at index C, then the computation
/// graph will be like:
///
/// ```text
///   4 ->              +------ root hash ------+
///                     |                       |
///   3 ->        +---- # ----+           +---- # ----+
///               |           |           |           |
///   2 ->        #           @           8           #
///             /   \                               /   \
///   1 ->     0     3                             #     @
///                                               / \
///   0 ->                                       C   @
///   ^
/// height
/// Note: @ denotes placeholder hash.
/// ```
#[cfg(any(test, feature = "fuzzing"))]
impl Arbitrary for InternalNode {
    type Parameters = ();
    type Strategy = BoxedStrategy<Self>;

    fn arbitrary_with(_args: ()) -> Self::Strategy {
        hash_map(any::<Nibble>(), any::<Child>(), 1..=16)
            .prop_filter(
                "InternalNode constructor panics when its only child is a leaf.",
                |children| {
                    !(children.len() == 1 && children.values().next().expect("Must exist.").is_leaf)
                },
            )
            .prop_map(InternalNode::new)
            .boxed()
    }
}

impl InternalNode {
    /// Creates a new Internal node.
    pub fn new(children: Children) -> Self {
        // Assert the internal node must have >= 1 children. If it only has one
        // child, it cannot be a leaf node. Otherwise, the leaf node
        // should be a child of this internal node's parent.
        assert!(!children.is_empty());
        if children.len() == 1 {
            assert!(
                !children
                    .values()
                    .next()
                    .expect("Must have 1 element")
                    .is_leaf
            )
        }
        Self { children }
    }

    pub fn hash(&self) -> HashValue {
        self.merkle_hash(
            0, /* start index */
            16, /* the number of leaves in the subtree of which we want the
                * hash of root */
            self.generate_bitmaps(),
        )
    }

    pub fn serialize(&self, binary: &mut Vec<u8>) -> Result<()> {
        let (mut existence_bitmap, leaf_bitmap) = self.generate_bitmaps();
        binary.write_u16::<LittleEndian>(existence_bitmap)?;
        binary.write_u16::<LittleEndian>(leaf_bitmap)?;
        for _ in 0..existence_bitmap.count_ones() {
            let next_child = existence_bitmap.trailing_zeros() as u8;
            let child = &self.children[&Nibble::from(next_child)];
            serialize_u64_varint(child.version, binary);
            binary.extend(child.hash.to_vec());
            existence_bitmap &= !(1 << next_child);
        }
        Ok(())
    }

    pub fn deserialize(data: &[u8]) -> Result<Self> {
        let mut reader = Cursor::new(data);
        let len = data.len();

        // Read and validate existence and leaf bitmaps
        let mut existence_bitmap = reader.read_u16::<LittleEndian>()?;
        let leaf_bitmap = reader.read_u16::<LittleEndian>()?;
        match existence_bitmap {
            0 => return Err(NodeDecodeError::NoChildren.into()),
            _ if (existence_bitmap & leaf_bitmap) != leaf_bitmap => {
                return Err(NodeDecodeError::ExtraLeaves {
                    existing: existence_bitmap,
                    leaves: leaf_bitmap,
                }
                .into())
            }
            _ => (),
        }

        // Reconstruct children
        let mut children = HashMap::new();
        for _ in 0..existence_bitmap.count_ones() {
            let next_child = existence_bitmap.trailing_zeros() as u8;
            let version = deserialize_u64_varint(&mut reader)?;
            let pos = reader.position() as usize;
            let remaining = len - pos;
            ensure!(
                remaining >= size_of::<HashValue>(),
                "not enough bytes left, children: {}, bytes: {}",
                existence_bitmap.count_ones(),
                remaining
            );
            let child_bit = 1 << next_child;
            children.insert(
                Nibble::from(next_child),
                Child::new(
                    HashValue::from_slice(
                        &reader.get_ref()[pos..pos + size_of::<HashValue>()],
                    )?,
                    version,
                    (leaf_bitmap & child_bit) != 0,
                ),
            );
            reader.seek(SeekFrom::Current(size_of::<HashValue>() as i64))?;
            existence_bitmap &= !child_bit;
        }
        assert_eq!(existence_bitmap, 0);
        Ok(Self { children })
    }

    /// Gets the `n`-th child.
    pub fn child(&self, n: Nibble) -> Option<&Child> { self.children.get(&n) }

    /// Generates `existence_bitmap` and `leaf_bitmap` as a pair of `u16`s:
    /// child at index `i` exists if `existence_bitmap[i]` is set; child at
    /// index `i` is leaf node if `leaf_bitmap[i]` is set.
    pub fn generate_bitmaps(&self) -> (u16, u16) {
        let mut existence_bitmap = 0;
        let mut leaf_bitmap = 0;
        for (nibble, child) in self.children.iter() {
            let i = u8::from(*nibble);
            existence_bitmap |= 1u16 << i;
            leaf_bitmap |= (child.is_leaf as u16) << i;
        }
        // `leaf_bitmap` must be a subset of `existence_bitmap`.
        assert_eq!(existence_bitmap | leaf_bitmap, existence_bitmap);
        (existence_bitmap, leaf_bitmap)
    }

    /// Given a range [start, start + width), returns the sub-bitmap of that
    /// range.
    fn range_bitmaps(start: u8, width: u8, bitmaps: (u16, u16)) -> (u16, u16) {
        assert!(start < 16 && width.count_ones() == 1 && start % width == 0);
        // A range with `start == 8` and `width == 4` will generate a mask
        // 0b0000111100000000.
        let mask = if width == 16 {
            0xffff
        } else {
            assert!(width <= 16);
            (1 << width) - 1
        } << start;
        (bitmaps.0 & mask, bitmaps.1 & mask)
    }

    fn merkle_hash(
        &self, start: u8, width: u8,
        (existence_bitmap, leaf_bitmap): (u16, u16),
    ) -> HashValue {
        // Given a bit [start, 1 << nibble_height], return the value of that
        // range.
        let (range_existence_bitmap, range_leaf_bitmap) =
            Self::range_bitmaps(start, width, (existence_bitmap, leaf_bitmap));
        if range_existence_bitmap == 0 {
            // No child under this subtree
            *SPARSE_MERKLE_PLACEHOLDER_HASH
        } else if range_existence_bitmap.count_ones() == 1
            && (range_leaf_bitmap != 0 || width == 1)
        {
            // Only 1 leaf child under this subtree or reach the lowest level
            let only_child_index =
                Nibble::from(range_existence_bitmap.trailing_zeros() as u8);
            self.child(only_child_index)
                .with_context(|| {
                    format!(
                        "Corrupted internal node: existence_bitmap indicates \
                         the existence of a non-exist child at index {:x}",
                        only_child_index
                    )
                })
                .unwrap()
                .hash
        } else {
            let left_child = self.merkle_hash(
                start,
                width / 2,
                (existence_bitmap, leaf_bitmap),
            );
            let right_child = self.merkle_hash(
                start + width / 2,
                width / 2,
                (existence_bitmap, leaf_bitmap),
            );
            SparseMerkleInternalNode::new(left_child, right_child).hash()
        }
    }

    /// Gets the child and its corresponding siblings that are necessary to
    /// generate the proof for the `n`-th child. If it is an existence
    /// proof, the returned child must be the `n`-th child; otherwise, the
    /// returned child may be another child. See inline explanation for
    /// details. When calling this function with n = 11 (node `b` in the
    /// following graph), the range at each level is illustrated as a pair
    /// of square brackets:
    ///
    /// ```text
    ///     4      [f   e   d   c   b   a   9   8   7   6   5   4   3   2   1   0] -> root level
    ///            ---------------------------------------------------------------
    ///     3      [f   e   d   c   b   a   9   8] [7   6   5   4   3   2   1   0] width = 8
    ///                                  chs <--┘                        shs <--┘
    ///     2      [f   e   d   c] [b   a   9   8] [7   6   5   4] [3   2   1   0] width = 4
    ///                  shs <--┘               └--> chs
    ///     1      [f   e] [d   c] [b   a] [9   8] [7   6] [5   4] [3   2] [1   0] width = 2
    ///                          chs <--┘       └--> shs
    ///     0      [f] [e] [d] [c] [b] [a] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0] width = 1
    ///     ^                chs <--┘   └--> shs
    ///     |   MSB|<---------------------- uint 16 ---------------------------->|LSB
    ///  height    chs: `child_half_start`         shs: `sibling_half_start`
    /// ```
    pub fn get_child_with_siblings(
        &self, node_key: &NodeKey, n: Nibble,
    ) -> (Option<NodeKey>, Vec<HashValue>) {
        let mut siblings = vec![];
        let (existence_bitmap, leaf_bitmap) = self.generate_bitmaps();

        // Nibble height from 3 to 0.
        for h in (0..4).rev() {
            // Get the number of children of the internal node that each subtree
            // at this height covers.
            let width = 1 << h;
            let (child_half_start, sibling_half_start) =
                get_child_and_sibling_half_start(n, h);
            // Compute the root hash of the subtree rooted at the sibling of
            // `r`.
            siblings.push(self.merkle_hash(
                sibling_half_start,
                width,
                (existence_bitmap, leaf_bitmap),
            ));

            let (range_existence_bitmap, range_leaf_bitmap) =
                Self::range_bitmaps(
                    child_half_start,
                    width,
                    (existence_bitmap, leaf_bitmap),
                );

            if range_existence_bitmap == 0 {
                // No child in this range.
                return (None, siblings);
            } else if range_existence_bitmap.count_ones() == 1
                && (range_leaf_bitmap.count_ones() == 1 || width == 1)
            {
                // Return the only 1 leaf child under this subtree or reach the
                // lowest level Even this leaf child is not the
                // n-th child, it should be returned instead of
                // `None` because it's existence indirectly proves the n-th
                // child doesn't exist. Please read proof format
                // for details.
                let only_child_index =
                    Nibble::from(range_existence_bitmap.trailing_zeros() as u8);
                return (
                    {
                        let only_child_version = self
                            .child(only_child_index)
                            // Should be guaranteed by the self invariants, but these are not easy to express at the moment
                            .with_context(|| {
                                format!(
                                    "Corrupted internal node: child_bitmap indicates \
                                     the existence of a non-exist child at index {:x}",
                                    only_child_index
                                )
                            })
                            .unwrap()
                            .version;
                        Some(node_key.gen_child_node_key(
                            only_child_version,
                            only_child_index,
                        ))
                    },
                    siblings,
                );
            }
        }
        unreachable!("Impossible to get here without returning even at the lowest level.")
    }
}

/// Given a nibble, computes the start position of its `child_half_start` and
/// `sibling_half_start` at `height` level.
pub(crate) fn get_child_and_sibling_half_start(
    n: Nibble, height: u8,
) -> (u8, u8) {
    // Get the index of the first child belonging to the same subtree whose
    // root, let's say `r` is at `height` that the n-th child belongs to.
    // Note: `child_half_start` will be always equal to `n` at height 0.
    let child_half_start = (0xff << height) & u8::from(n);

    // Get the index of the first child belonging to the subtree whose root is
    // the sibling of `r` at `height`.
    let sibling_half_start = child_half_start ^ (1 << height);

    (child_half_start, sibling_half_start)
}

/// Represents an account.
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct LeafNode<V> {
    // The hashed account address associated with this leaf node.
    account_key: HashValue,
    // The hash of the value.
    value_hash: HashValue,
    // The value stored in the leaf, associated with `account_key`.
    value: V,
}

impl<V> LeafNode<V>
where V: crate::Value
{
    /// Creates a new leaf node.
    pub fn new(account_key: HashValue, value: V) -> Self {
        let value_hash = value.hash();
        Self {
            account_key,
            value_hash,
            value,
        }
    }

    /// Gets the account key, the hashed account address.
    pub fn account_key(&self) -> HashValue { self.account_key }

    /// Gets the associated value itself.
    pub fn value(&self) -> &V { &self.value }

    pub fn hash(&self) -> HashValue {
        SparseMerkleLeafNode::new(self.account_key, self.value_hash).hash()
    }
}

impl<V> From<LeafNode<V>> for SparseMerkleLeafNode {
    fn from(leaf_node: LeafNode<V>) -> Self {
        Self::new(leaf_node.account_key, leaf_node.value_hash)
    }
}

#[repr(u8)]
#[derive(FromPrimitive, ToPrimitive)]
enum NodeTag {
    Null = 0,
    Internal = 1,
    Leaf = 2,
}

/// The concrete node type of
/// [`JellyfishMerkleTree`](crate::JellyfishMerkleTree).
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum Node<V> {
    /// Represents `null`.
    Null,
    /// A wrapper of [`InternalNode`].
    Internal(InternalNode),
    /// A wrapper of [`LeafNode`].
    Leaf(LeafNode<V>),
}

impl<V> From<InternalNode> for Node<V> {
    fn from(node: InternalNode) -> Self { Node::Internal(node) }
}

impl From<InternalNode> for Children {
    fn from(node: InternalNode) -> Self { node.children }
}

impl<V> From<LeafNode<V>> for Node<V> {
    fn from(node: LeafNode<V>) -> Self { Node::Leaf(node) }
}

impl<V> Node<V>
where V: crate::Value
{
    /// Creates the [`Null`](Node::Null) variant.
    pub fn new_null() -> Self { Node::Null }

    /// Creates the [`Internal`](Node::Internal) variant.
    pub fn new_internal(children: Children) -> Self {
        Node::Internal(InternalNode::new(children))
    }

    /// Creates the [`Leaf`](Node::Leaf) variant.
    pub fn new_leaf(account_key: HashValue, value: V) -> Self {
        Node::Leaf(LeafNode::new(account_key, value))
    }

    /// Returns `true` if the node is a leaf node.
    pub fn is_leaf(&self) -> bool { matches!(self, Node::Leaf(_)) }

    /// Serializes to bytes for physical storage.
    pub fn encode(&self) -> Result<Vec<u8>> {
        let mut out = vec![];
        match self {
            Node::Null => {
                out.push(NodeTag::Null as u8);
            }
            Node::Internal(internal_node) => {
                out.push(NodeTag::Internal as u8);
                internal_node.serialize(&mut out)?;
                DIEM_JELLYFISH_INTERNAL_ENCODED_BYTES.inc_by(out.len() as u64);
            }
            Node::Leaf(leaf_node) => {
                out.push(NodeTag::Leaf as u8);
                out.extend(bcs::to_bytes(&leaf_node)?);
                DIEM_JELLYFISH_LEAF_ENCODED_BYTES.inc_by(out.len() as u64);
            }
        }
        Ok(out)
    }

    /// Computes the hash of nodes.
    pub fn hash(&self) -> HashValue {
        match self {
            Node::Null => *SPARSE_MERKLE_PLACEHOLDER_HASH,
            Node::Internal(internal_node) => internal_node.hash(),
            Node::Leaf(leaf_node) => leaf_node.hash(),
        }
    }

    /// Recovers from serialized bytes in physical storage.
    pub fn decode(val: &[u8]) -> Result<Node<V>> {
        if val.is_empty() {
            return Err(NodeDecodeError::EmptyInput.into());
        }
        let tag = val[0];
        let node_tag = NodeTag::from_u8(tag);
        match node_tag {
            Some(NodeTag::Null) => Ok(Node::Null),
            Some(NodeTag::Internal) => {
                Ok(Node::Internal(InternalNode::deserialize(&val[1..])?))
            }
            Some(NodeTag::Leaf) => Ok(Node::Leaf(bcs::from_bytes(&val[1..])?)),
            None => {
                Err(NodeDecodeError::UnknownTag { unknown_tag: tag }.into())
            }
        }
    }
}

/// Error thrown when a [`Node`] fails to be deserialized out of a byte sequence
/// stored in physical storage, via [`Node::decode`].
#[derive(Debug, Error, Eq, PartialEq)]
pub enum NodeDecodeError {
    /// Input is empty.
    #[error("Missing tag due to empty input")]
    EmptyInput,

    /// The first byte of the input is not a known tag representing one of the
    /// variants.
    #[error("lead tag byte is unknown: {}", unknown_tag)]
    UnknownTag { unknown_tag: u8 },

    /// No children found in internal node
    #[error("No children found in internal node")]
    NoChildren,

    /// Extra leaf bits set
    #[error(
        "Non-existent leaf bits set, existing: {}, leaves: {}",
        existing,
        leaves
    )]
    ExtraLeaves { existing: u16, leaves: u16 },
}

/// Helper function to serialize version in a more efficient encoding.
/// We use a super simple encoding - the high bit is set if more bytes follow.
fn serialize_u64_varint(mut num: u64, binary: &mut Vec<u8>) {
    for _ in 0..8 {
        let low_bits = num as u8 & 0x7f;
        num >>= 7;
        let more = (num > 0) as u8;
        binary.push(low_bits | more << 7);
        if more == 0 {
            return;
        }
    }
    // Last byte is encoded raw; this means there are no bad encodings.
    assert_ne!(num, 0);
    assert!(num <= 0xff);
    binary.push(num as u8);
}

/// Helper function to deserialize versions from above encoding.
fn deserialize_u64_varint<T>(reader: &mut T) -> Result<u64>
where T: Read {
    let mut num = 0u64;
    for i in 0..8 {
        let byte = reader.read_u8()?;
        let more = (byte & 0x80) != 0;
        num |= u64::from(byte & 0x7f) << (i * 7);
        if !more {
            return Ok(num);
        }
    }
    // Last byte is encoded as is.
    let byte = reader.read_u8()?;
    num |= u64::from(byte) << 56;
    Ok(num)
}