1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/
#![forbid(unsafe_code)]
//! This module implements [`JellyfishMerkleTree`] backed by storage module. The
//! tree itself doesn't persist anything, but realizes the logic of R/W only.
//! The write path will produce all the intermediate results in a batch for
//! storage layer to commit and the read path will return results directly. The
//! public APIs are only [`new`], [`put_value_sets`], [`put_value_set`] and
//! [`get_with_proof`]. After each put with a `value_set` based on a known
//! version, the tree will return a new root hash with a [`TreeUpdateBatch`]
//! containing all the new nodes and indices of stale nodes.
//!
//! A Jellyfish Merkle Tree itself logically is a 256-bit sparse Merkle tree
//! with an optimization that any subtree containing 0 or 1 leaf node will be
//! replaced by that leaf node or a placeholder node with default hash value.
//! With this optimization we can save CPU by avoiding hashing on many sparse
//! levels in the tree. Physically, the tree is structurally similar to the
//! modified Patricia Merkle tree of Ethereum but with some modifications. A
//! standard Jellyfish Merkle tree will look like the following figure:
//!
//! ```text
//! .──────────────────────.
//! _.─────' `──────.
//! _.──' `───.
//! _.─' `──.
//! _.─' `──.
//! ,' `.
//! ,─' '─.
//! ,' `.
//! ,' `.
//! ╱ ╲
//! ╱ ╲
//! ╱ ╲
//! ╱ ╲
//! ; :
//! ; :
//! ; :
//! │ │
//! +──────────────────────────────────────────────────────────────────────────────────────────────+
//! .''. .''. .''. .''. .''. .''. .''. .''. .''. .''. .''. .''. .''. .''. .''. .''.
//! / \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \
//! +----++----++----++----++----++----++----++----++----++----++----++----++----++----++----++----+
//! ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
//! ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
//! ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
//! ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
//! ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
//! ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
//! ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
//! ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
//! ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
//! ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
//! ■: the [`Value`] type this tree stores.
//! ```
//!
//! A Jellyfish Merkle Tree consists of [`InternalNode`] and [`LeafNode`].
//! [`InternalNode`] is like branch node in ethereum patricia merkle with 16
//! children to represent a 4-level binary tree and [`LeafNode`] is similar to
//! that in patricia merkle too. In the above figure, each `bell` in the
//! jellyfish is an [`InternalNode`] while each tentacle is a [`LeafNode`]. It
//! is noted that Jellyfish merkle doesn't have a counterpart for `extension`
//! node of ethereum patricia merkle.
//!
//! [`JellyfishMerkleTree`]: struct.JellyfishMerkleTree.html
//! [`new`]: struct.JellyfishMerkleTree.html#method.new
//! [`put_value_sets`]: struct.JellyfishMerkleTree.html#method.put_value_sets
//! [`put_value_set`]: struct.JellyfishMerkleTree.html#method.put_value_set
//! [`get_with_proof`]: struct.JellyfishMerkleTree.html#method.get_with_proof
//! [`TreeUpdateBatch`]: struct.TreeUpdateBatch.html
//! [`InternalNode`]: node_type/struct.InternalNode.html
//! [`LeafNode`]: node_type/struct.LeafNode.html
pub mod iterator;
#[cfg(test)]
mod jellyfish_merkle_test;
pub mod metrics;
#[cfg(any(test, feature = "fuzzing"))]
mod mock_tree_store;
mod nibble_path;
pub mod node_type;
pub mod restore;
#[cfg(any(test, feature = "fuzzing"))]
pub mod test_helper;
mod tree_cache;
use anyhow::{bail, ensure, format_err, Result};
use diem_crypto::{hash::CryptoHash, HashValue};
use diem_nibble::Nibble;
use diem_types::{
proof::{SparseMerkleProof, SparseMerkleRangeProof},
transaction::Version,
};
use nibble_path::{skip_common_prefix, NibbleIterator, NibblePath};
use node_type::{Child, Children, InternalNode, LeafNode, Node, NodeKey};
#[cfg(any(test, feature = "fuzzing"))]
use proptest::arbitrary::Arbitrary;
#[cfg(any(test, feature = "fuzzing"))]
use proptest_derive::Arbitrary;
use serde::{de::DeserializeOwned, Serialize};
use std::{
collections::{BTreeMap, BTreeSet},
marker::PhantomData,
};
use thiserror::Error;
use tree_cache::TreeCache;
#[derive(Error, Debug)]
#[error("Missing state root node at version {version}, probably pruned.")]
pub struct MissingRootError {
pub version: Version,
}
/// The hardcoded maximum height of a [`JellyfishMerkleTree`] in nibbles.
pub const ROOT_NIBBLE_HEIGHT: usize = HashValue::LENGTH * 2;
/// `TreeReader` defines the interface between
/// [`JellyfishMerkleTree`](struct.JellyfishMerkleTree.html)
/// and underlying storage holding nodes.
pub trait TreeReader<V> {
/// Gets node given a node key. Returns error if the node does not exist.
fn get_node(&self, node_key: &NodeKey) -> Result<Node<V>> {
self.get_node_option(node_key)?
.ok_or_else(|| format_err!("Missing node at {:?}.", node_key))
}
/// Gets node given a node key. Returns `None` if the node does not exist.
fn get_node_option(&self, node_key: &NodeKey) -> Result<Option<Node<V>>>;
/// Gets the rightmost leaf. Note that this assumes we are in the process of
/// restoring the tree and all nodes are at the same version.
fn get_rightmost_leaf(&self) -> Result<Option<(NodeKey, LeafNode<V>)>>;
}
pub trait TreeWriter<V> {
/// Writes a node batch into storage.
fn write_node_batch(&self, node_batch: &NodeBatch<V>) -> Result<()>;
}
/// `Value` defines the types of data that can be stored in a Jellyfish Merkle
/// tree.
pub trait Value: Clone + CryptoHash + Serialize + DeserializeOwned {}
/// `TestValue` defines the types of data that can be stored in a Jellyfish
/// Merkle tree and used in tests.
#[cfg(any(test, feature = "fuzzing"))]
pub trait TestValue:
Value + Arbitrary + Clone + std::fmt::Debug + Eq + PartialEq + 'static
{
}
// This crate still depends on types for a few things, therefore we implement
// `Value` and `TestValue` for `AccountStateBlob` here. Ideally the module that
// defines the specific value like `AccountStateBlob` should import the `Value`
// trait and implement it there.
impl Value for diem_types::account_state_blob::AccountStateBlob {}
#[cfg(any(test, feature = "fuzzing"))]
impl TestValue for diem_types::account_state_blob::AccountStateBlob {}
/// Node batch that will be written into db atomically with other batches.
pub type NodeBatch<V> = BTreeMap<NodeKey, Node<V>>;
/// [`StaleNodeIndex`](struct.StaleNodeIndex.html) batch that will be written
/// into db atomically with other batches.
pub type StaleNodeIndexBatch = BTreeSet<StaleNodeIndex>;
#[derive(Clone, Debug, Default, Eq, PartialEq)]
pub struct NodeStats {
pub new_nodes: usize,
pub new_leaves: usize,
pub stale_nodes: usize,
pub stale_leaves: usize,
}
/// Indicates a node becomes stale since `stale_since_version`.
#[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[cfg_attr(any(test, feature = "fuzzing"), derive(Arbitrary))]
pub struct StaleNodeIndex {
/// The version since when the node is overwritten and becomes stale.
pub stale_since_version: Version,
/// The [`NodeKey`](node_type/struct.NodeKey.html) identifying the node
/// associated with this record.
pub node_key: NodeKey,
}
/// This is a wrapper of [`NodeBatch`](type.NodeBatch.html),
/// [`StaleNodeIndexBatch`](type.StaleNodeIndexBatch.html) and some stats of
/// nodes that represents the incremental updates of a tree and pruning indices
/// after applying a write set, which is a vector of `hashed_account_address`
/// and `new_value` pairs.
#[derive(Clone, Debug, Default, Eq, PartialEq)]
pub struct TreeUpdateBatch<V> {
pub node_batch: NodeBatch<V>,
pub stale_node_index_batch: StaleNodeIndexBatch,
pub node_stats: Vec<NodeStats>,
}
/// The Jellyfish Merkle tree data structure. See [`crate`] for description.
pub struct JellyfishMerkleTree<'a, R, V> {
reader: &'a R,
phantom_value: PhantomData<V>,
}
impl<'a, R, V> JellyfishMerkleTree<'a, R, V>
where
R: 'a + TreeReader<V>,
V: Value,
{
/// Creates a `JellyfishMerkleTree` backed by the given
/// [`TreeReader`](trait.TreeReader.html).
pub fn new(reader: &'a R) -> Self {
Self {
reader,
phantom_value: PhantomData,
}
}
/// This is a convenient function that calls
/// [`put_value_sets`](struct.JellyfishMerkleTree.html#method.
/// put_value_sets) with a single `keyed_value_set`.
#[cfg(any(test, feature = "fuzzing"))]
pub fn put_value_set(
&self, value_set: Vec<(HashValue, V)>, version: Version,
) -> Result<(HashValue, TreeUpdateBatch<V>)> {
let (root_hashes, tree_update_batch) =
self.put_value_sets(vec![value_set], version)?;
assert_eq!(
root_hashes.len(),
1,
"root_hashes must consist of a single value.",
);
Ok((root_hashes[0], tree_update_batch))
}
/// Returns the new nodes and values in a batch after applying `value_set`.
/// For example, if after transaction `T_i` the committed state of tree
/// in the persistent storage looks like the following structure:
///
/// ```text
/// S_i
/// / \
/// . .
/// . .
/// / \
/// o x
/// / \
/// A B
/// storage (disk)
/// ```
///
/// where `A` and `B` denote the states of two adjacent accounts, and `x` is
/// a sibling subtree of the path from root to A and B in the tree. Then
/// a `value_set` produced by the next transaction `T_{i+1}` modifies
/// other accounts `C` and `D` exist in the subtree under `x`, a
/// new partial tree will be constructed in memory and the structure will
/// be:
///
/// ```text
/// S_i | S_{i+1}
/// / \ | / \
/// . . | . .
/// . . | . .
/// / \ | / \
/// / x | / x'
/// o<-------------+- / \
/// / \ | C D
/// A B |
/// storage (disk) | cache (memory)
/// ```
///
/// With this design, we are able to query the global state in persistent
/// storage and generate the proposed tree delta based on a specific
/// root hash and `value_set`. For example, if we want to execute
/// another transaction `T_{i+1}'`, we can use the tree `S_i` in storage
/// and apply the `value_set` of transaction `T_{i+1}`. Then if the storage
/// commits the returned batch, the state `S_{i+1}` is ready to be read
/// from the tree by calling \[`get_with_proof`\](struct.
/// JellyfishMerkleTree.html#method.get_with_proof). Anything inside the
/// batch is not reachable from public interfaces before being committed.
pub fn put_value_sets(
&self, value_sets: Vec<Vec<(HashValue, V)>>, first_version: Version,
) -> Result<(Vec<HashValue>, TreeUpdateBatch<V>)> {
let mut tree_cache = TreeCache::new(self.reader, first_version)?;
for (idx, value_set) in value_sets.into_iter().enumerate() {
assert!(
!value_set.is_empty(),
"Transactions that output empty write set should not be included.",
);
let version = first_version + idx as u64;
value_set.into_iter().try_for_each(|(key, value)| {
Self::put(key, value, version, &mut tree_cache)
})?;
// Freezes the current cache to make all contents in the current
// cache immutable.
tree_cache.freeze();
}
Ok(tree_cache.into())
}
fn put(
key: HashValue, value: V, version: Version,
tree_cache: &mut TreeCache<R, V>,
) -> Result<()> {
let nibble_path = NibblePath::new(key.to_vec());
// Get the root node. If this is the first operation, it would get the
// root node from the underlying db. Otherwise it most likely
// would come from `cache`.
let root_node_key = tree_cache.get_root_node_key();
let mut nibble_iter = nibble_path.nibbles();
// Start insertion from the root node.
let (new_root_node_key, _) = Self::insert_at(
root_node_key.clone(),
version,
&mut nibble_iter,
value,
tree_cache,
)?;
tree_cache.set_root_node_key(new_root_node_key);
Ok(())
}
/// Helper function for recursive insertion into the subtree that starts
/// from the current [`NodeKey`](node_type/struct.NodeKey.html). Returns
/// the newly inserted node. It is safe to use recursion here because
/// the max depth is limited by the key length which for this tree is
/// the length of the hash of account addresses.
fn insert_at(
node_key: NodeKey, version: Version, nibble_iter: &mut NibbleIterator,
value: V, tree_cache: &mut TreeCache<R, V>,
) -> Result<(NodeKey, Node<V>)> {
let node = tree_cache.get_node(&node_key)?;
match node {
Node::Internal(internal_node) => Self::insert_at_internal_node(
node_key,
internal_node,
version,
nibble_iter,
value,
tree_cache,
),
Node::Leaf(leaf_node) => Self::insert_at_leaf_node(
node_key,
leaf_node,
version,
nibble_iter,
value,
tree_cache,
),
Node::Null => {
if node_key.nibble_path().num_nibbles() != 0 {
bail!(
"Null node exists for non-root node with node_key {:?}",
node_key
);
}
// delete the old null node if the at the same version.
if node_key.version() == version {
tree_cache.delete_node(&node_key, false /* is_leaf */);
}
Self::create_leaf_node(
NodeKey::new_empty_path(version),
&nibble_iter,
value,
tree_cache,
)
}
}
}
/// Helper function for recursive insertion into the subtree that starts
/// from the current `internal_node`. Returns the newly inserted node
/// with its [`NodeKey`](node_type/struct.NodeKey.html).
fn insert_at_internal_node(
mut node_key: NodeKey, internal_node: InternalNode, version: Version,
nibble_iter: &mut NibbleIterator, value: V,
tree_cache: &mut TreeCache<R, V>,
) -> Result<(NodeKey, Node<V>)> {
// We always delete the existing internal node here because it will not
// be referenced anyway since this version.
tree_cache.delete_node(&node_key, false /* is_leaf */);
// Find the next node to visit following the next nibble as index.
let child_index = nibble_iter.next().expect("Ran out of nibbles");
// Traverse downwards from this internal node recursively to get the
// `node_key` of the child node at `child_index`.
let (_, new_child_node) = match internal_node.child(child_index) {
Some(child) => {
let child_node_key =
node_key.gen_child_node_key(child.version, child_index);
Self::insert_at(
child_node_key,
version,
nibble_iter,
value,
tree_cache,
)?
}
None => {
let new_child_node_key =
node_key.gen_child_node_key(version, child_index);
Self::create_leaf_node(
new_child_node_key,
nibble_iter,
value,
tree_cache,
)?
}
};
// Reuse the current `InternalNode` in memory to create a new internal
// node.
let mut children: Children = internal_node.into();
children.insert(
child_index,
Child::new(
new_child_node.hash(),
version,
new_child_node.is_leaf(),
),
);
let new_internal_node = InternalNode::new(children);
node_key.set_version(version);
// Cache this new internal node.
tree_cache
.put_node(node_key.clone(), new_internal_node.clone().into())?;
Ok((node_key, new_internal_node.into()))
}
/// Helper function for recursive insertion into the subtree that starts
/// from the `existing_leaf_node`. Returns the newly inserted node with
/// its [`NodeKey`](node_type/struct.NodeKey.html).
fn insert_at_leaf_node(
mut node_key: NodeKey, existing_leaf_node: LeafNode<V>,
version: Version, nibble_iter: &mut NibbleIterator, value: V,
tree_cache: &mut TreeCache<R, V>,
) -> Result<(NodeKey, Node<V>)> {
// We are on a leaf node but trying to insert another node, so we may
// diverge. We always delete the existing leaf node here because
// it will not be referenced anyway since this version.
tree_cache.delete_node(&node_key, true /* is_leaf */);
// 1. Make sure that the existing leaf nibble_path has the same prefix
// as the already visited part of the nibble iter of the
// incoming key and advances the existing leaf nibble iterator
// by the length of that prefix.
let mut visited_nibble_iter = nibble_iter.visited_nibbles();
let existing_leaf_nibble_path =
NibblePath::new(existing_leaf_node.account_key().to_vec());
let mut existing_leaf_nibble_iter = existing_leaf_nibble_path.nibbles();
skip_common_prefix(
&mut visited_nibble_iter,
&mut existing_leaf_nibble_iter,
);
// TODO(lightmark): Change this to corrupted error.
assert!(
visited_nibble_iter.is_finished(),
"Leaf nodes failed to share the same visited nibbles before index {}",
existing_leaf_nibble_iter.visited_nibbles().num_nibbles()
);
// 2. Determine the extra part of the common prefix that extends from
// the position where step 1 ends between this leaf node and the
// incoming key.
let mut existing_leaf_nibble_iter_below_internal =
existing_leaf_nibble_iter.remaining_nibbles();
let num_common_nibbles_below_internal = skip_common_prefix(
nibble_iter,
&mut existing_leaf_nibble_iter_below_internal,
);
let mut common_nibble_path =
nibble_iter.visited_nibbles().collect::<NibblePath>();
// 2.1. Both are finished. That means the incoming key already exists in
// the tree and we just need to update its value.
if nibble_iter.is_finished() {
assert!(existing_leaf_nibble_iter_below_internal.is_finished());
// The new leaf node will have the same nibble_path with a new
// version as node_key.
node_key.set_version(version);
// Create the new leaf node with the same address but the new value.
return Self::create_leaf_node(
node_key,
nibble_iter,
value,
tree_cache,
);
}
// 2.2. both are unfinished(They have keys with same length so it's
// impossible to have one finished and the other not). This
// means the incoming key forks at some point between the
// position where step 1 ends and the last nibble, inclusive. Then
// create a seris of internal nodes the number of which equals
// to the length of the extra part of the common prefix in step
// 2, a new leaf node for the incoming key, and update the
// [`NodeKey`] of existing leaf node. We create new internal nodes in a
// bottom-up order.
let existing_leaf_index = existing_leaf_nibble_iter_below_internal
.next()
.expect("Ran out of nibbles");
let new_leaf_index = nibble_iter.next().expect("Ran out of nibbles");
assert_ne!(existing_leaf_index, new_leaf_index);
let mut children = Children::new();
children.insert(
existing_leaf_index,
Child::new(
existing_leaf_node.hash(),
version,
true, /* is_leaf */
),
);
node_key = NodeKey::new(version, common_nibble_path.clone());
tree_cache.put_node(
node_key.gen_child_node_key(version, existing_leaf_index),
existing_leaf_node.into(),
)?;
let (_, new_leaf_node) = Self::create_leaf_node(
node_key.gen_child_node_key(version, new_leaf_index),
nibble_iter,
value,
tree_cache,
)?;
children.insert(
new_leaf_index,
Child::new(new_leaf_node.hash(), version, true /* is_leaf */),
);
let internal_node = InternalNode::new(children);
let mut next_internal_node = internal_node.clone();
tree_cache.put_node(node_key.clone(), internal_node.into())?;
for _i in 0..num_common_nibbles_below_internal {
let nibble = common_nibble_path.pop().expect(
"Common nibble_path below internal node ran out of nibble",
);
node_key = NodeKey::new(version, common_nibble_path.clone());
let mut children = Children::new();
children.insert(
nibble,
Child::new(
next_internal_node.hash(),
version,
false, /* is_leaf */
),
);
let internal_node = InternalNode::new(children);
next_internal_node = internal_node.clone();
tree_cache.put_node(node_key.clone(), internal_node.into())?;
}
Ok((node_key, next_internal_node.into()))
}
/// Helper function for creating leaf nodes. Returns the newly created leaf
/// node.
fn create_leaf_node(
node_key: NodeKey, nibble_iter: &NibbleIterator, value: V,
tree_cache: &mut TreeCache<R, V>,
) -> Result<(NodeKey, Node<V>)> {
// Get the underlying bytes of nibble_iter which must be a key, i.e.,
// hashed account address with `HashValue::LENGTH` bytes.
let new_leaf_node = Node::new_leaf(
HashValue::from_slice(nibble_iter.get_nibble_path().bytes())
.expect("LeafNode must have full nibble path."),
value,
);
tree_cache.put_node(node_key.clone(), new_leaf_node.clone())?;
Ok((node_key, new_leaf_node))
}
/// Returns the value (if applicable) and the corresponding merkle proof.
pub fn get_with_proof(
&self, key: HashValue, version: Version,
) -> Result<(Option<V>, SparseMerkleProof<V>)> {
// Empty tree just returns proof with no sibling hash.
let mut next_node_key = NodeKey::new_empty_path(version);
let mut siblings = vec![];
let nibble_path = NibblePath::new(key.to_vec());
let mut nibble_iter = nibble_path.nibbles();
// We limit the number of loops here deliberately to avoid potential
// cyclic graph bugs in the tree structure.
for nibble_depth in 0..=ROOT_NIBBLE_HEIGHT {
let next_node =
self.reader.get_node(&next_node_key).map_err(|err| {
if nibble_depth == 0 {
MissingRootError { version }.into()
} else {
err
}
})?;
match next_node {
Node::Internal(internal_node) => {
let queried_child_index = nibble_iter
.next()
.ok_or_else(|| format_err!("ran out of nibbles"))?;
let (child_node_key, mut siblings_in_internal) =
internal_node.get_child_with_siblings(
&next_node_key,
queried_child_index,
);
siblings.append(&mut siblings_in_internal);
next_node_key = match child_node_key {
Some(node_key) => node_key,
None => {
return Ok((
None,
SparseMerkleProof::new(None, {
siblings.reverse();
siblings
}),
))
}
};
}
Node::Leaf(leaf_node) => {
return Ok((
if leaf_node.account_key() == key {
Some(leaf_node.value().clone())
} else {
None
},
SparseMerkleProof::new(Some(leaf_node.into()), {
siblings.reverse();
siblings
}),
));
}
Node::Null => {
if nibble_depth == 0 {
return Ok((
None,
SparseMerkleProof::new(None, vec![]),
));
} else {
bail!(
"Non-root null node exists with node key {:?}",
next_node_key
);
}
}
}
}
bail!("Jellyfish Merkle tree has cyclic graph inside.");
}
/// Gets the proof that shows a list of keys up to `rightmost_key_to_prove`
/// exist at `version`.
pub fn get_range_proof(
&self, rightmost_key_to_prove: HashValue, version: Version,
) -> Result<SparseMerkleRangeProof> {
let (account, proof) =
self.get_with_proof(rightmost_key_to_prove, version)?;
ensure!(account.is_some(), "rightmost_key_to_prove must exist.");
let siblings = proof
.siblings()
.iter()
.rev()
.zip(rightmost_key_to_prove.iter_bits())
.filter_map(|(sibling, bit)| {
// We only need to keep the siblings on the right.
if !bit {
Some(*sibling)
} else {
None
}
})
.rev()
.collect();
Ok(SparseMerkleRangeProof::new(siblings))
}
#[cfg(test)]
pub fn get(&self, key: HashValue, version: Version) -> Result<Option<V>> {
Ok(self.get_with_proof(key, version)?.0)
}
pub fn get_root_hash(&self, version: Version) -> Result<HashValue> {
self.get_root_hash_option(version)?.ok_or_else(|| {
format_err!("Root node not found for version {}.", version)
})
}
pub fn get_root_hash_option(
&self, version: Version,
) -> Result<Option<HashValue>> {
let root_node_key = NodeKey::new_empty_path(version);
Ok(self
.reader
.get_node_option(&root_node_key)?
.map(|root_node| root_node.hash()))
}
}
trait NibbleExt {
fn get_nibble(&self, index: usize) -> Nibble;
fn common_prefix_nibbles_len(&self, other: HashValue) -> usize;
}
impl NibbleExt for HashValue {
/// Returns the `index`-th nibble.
fn get_nibble(&self, index: usize) -> Nibble {
mirai_annotations::precondition!(index < HashValue::LENGTH);
Nibble::from(
if index % 2 == 0 {
self[index / 2] >> 4
} else {
self[index / 2] & 0x0F
},
)
}
/// Returns the length of common prefix of `self` and `other` in nibbles.
fn common_prefix_nibbles_len(&self, other: HashValue) -> usize {
self.common_prefix_bits_len(other) / 4
}
}
#[cfg(test)]
mod test {
use super::NibbleExt;
use diem_crypto::hash::{HashValue, TestOnlyHash};
use diem_nibble::Nibble;
#[test]
fn test_common_prefix_nibbles_len() {
{
let hash1 = b"hello".test_only_hash();
let hash2 = b"HELLO".test_only_hash();
assert_eq!(hash1[0], 0b0011_0011);
assert_eq!(hash2[0], 0b1011_1000);
assert_eq!(hash1.common_prefix_nibbles_len(hash2), 0);
}
{
let hash1 = b"hello".test_only_hash();
let hash2 = b"world".test_only_hash();
assert_eq!(hash1[0], 0b0011_0011);
assert_eq!(hash2[0], 0b0100_0010);
assert_eq!(hash1.common_prefix_nibbles_len(hash2), 0);
}
{
let hash1 = b"hello".test_only_hash();
let hash2 = b"100011001000".test_only_hash();
assert_eq!(hash1[0], 0b0011_0011);
assert_eq!(hash2[0], 0b0011_0011);
assert_eq!(hash1[1], 0b0011_1000);
assert_eq!(hash2[1], 0b0010_0010);
assert_eq!(hash1.common_prefix_nibbles_len(hash2), 2);
}
{
let hash1 = b"hello".test_only_hash();
let hash2 = b"hello".test_only_hash();
assert_eq!(
hash1.common_prefix_nibbles_len(hash2),
HashValue::LENGTH * 2
);
}
}
#[test]
fn test_get_nibble() {
let hash = b"hello".test_only_hash();
assert_eq!(hash.get_nibble(0), Nibble::from(3));
assert_eq!(hash.get_nibble(1), Nibble::from(3));
assert_eq!(hash.get_nibble(2), Nibble::from(3));
assert_eq!(hash.get_nibble(3), Nibble::from(8));
assert_eq!(hash.get_nibble(62), Nibble::from(9));
assert_eq!(hash.get_nibble(63), Nibble::from(2));
}
}