1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/
//! An abstraction of x25519 elliptic curve keys required for
//! [Diffie-Hellman key exchange](https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange)
//! in the Diem project.
//! Ideally, only `x25519::PrivateKey` and `x25519::PublicKey` should be used
//! throughout the codebase, until the bytes are actually used in cryptographic
//! operations.
//!
//! # Examples
//!
//! ```
//! use diem_crypto::{test_utils::TEST_SEED, x25519, Uniform};
//! use rand::{rngs::StdRng, SeedableRng};
//!
//! // Derive an X25519 private key for testing.
//! let mut rng: StdRng = SeedableRng::from_seed(TEST_SEED);
//! let private_key = x25519::PrivateKey::generate(&mut rng);
//! let public_key = private_key.public_key();
//!
//! // Deserialize an hexadecimal private or public key
//! use diem_crypto::traits::ValidCryptoMaterialStringExt;
//! # fn main() -> Result<(), diem_crypto::traits::CryptoMaterialError> {
//! let private_key =
//! "404acc8ec6a0f18df7359a6ee7823f19dd95616b10fed8bdb0de030e891b945a";
//! let private_key = x25519::PrivateKey::from_encoded_string(&private_key)?;
//! let public_key =
//! "080e287879c918794170e258bfaddd75acac5b3e350419044655e4983a487120";
//! let public_key = x25519::PublicKey::from_encoded_string(&public_key)?;
//! # Ok(())
//! # }
//! ```
use crate::{
traits::{
self, CryptoMaterialError, ValidCryptoMaterial,
ValidCryptoMaterialStringExt,
},
x25519,
};
use diem_crypto_derive::{
DeserializeKey, SerializeKey, SilentDebug, SilentDisplay,
};
use rand::{CryptoRng, RngCore};
use std::convert::{TryFrom, TryInto};
#[cfg(any(test, feature = "fuzzing"))]
use proptest_derive::Arbitrary;
//
// Underlying Implementation
// =========================
//
// We re-export the dalek-x25519 library,
// This makes it easier to uniformalize build dalek-x25519 in diem-core.
//
pub use x25519_dalek;
//
// Main types and constants
// ========================
//
/// Size of a X25519 private key
pub const PRIVATE_KEY_SIZE: usize = 32;
/// Size of a X25519 public key
pub const PUBLIC_KEY_SIZE: usize = 32;
/// Size of a X25519 shared secret
pub const SHARED_SECRET_SIZE: usize = 32;
/// This type should be used to deserialize a received private key
#[derive(DeserializeKey, SilentDisplay, SilentDebug, SerializeKey)]
#[cfg_attr(any(test, feature = "fuzzing"), derive(Clone))]
pub struct PrivateKey(x25519_dalek::StaticSecret);
/// This type should be used to deserialize a received public key
#[derive(
Default,
Clone,
Copy,
PartialEq,
Eq,
Hash,
PartialOrd,
Ord,
SerializeKey,
DeserializeKey,
)]
#[cfg_attr(any(test, feature = "fuzzing"), derive(Arbitrary))]
pub struct PublicKey([u8; PUBLIC_KEY_SIZE]);
//
// Handy implementations
// =====================
//
impl PrivateKey {
/// Obtain the public key part of a private key
pub fn public_key(&self) -> PublicKey {
let public_key: x25519_dalek::PublicKey = (&self.0).into();
PublicKey(public_key.as_bytes().to_owned())
}
/// To perform a key exchange with another public key
pub fn diffie_hellman(
&self, remote_public_key: &PublicKey,
) -> [u8; SHARED_SECRET_SIZE] {
let remote_public_key =
x25519_dalek::PublicKey::from(remote_public_key.0);
let shared_secret = self.0.diffie_hellman(&remote_public_key);
shared_secret.as_bytes().to_owned()
}
/// Deserialize an X25119 PrivateKey given the sha512 pre-image of a hash
/// whose least significant half is a canonical X25519 scalar, following
/// the XEdDSA approach.
///
/// This will FAIL if the passed-in byte representation converts to a
/// non-canonical scalar in the X25519 sense (and thus cannot correspond to
/// a X25519 valid key without bit-mangling).
///
/// This is meant to compensate for the poor key storage capabilities of
/// some key management solutions, and NOT to promote double usage of
/// keys under several schemes, which would lead to BAD vulnerabilities.
pub fn from_ed25519_private_bytes(
private_slice: &[u8],
) -> Result<Self, CryptoMaterialError> {
let ed25519_secretkey =
ed25519_dalek::SecretKey::from_bytes(private_slice)
.map_err(|_| CryptoMaterialError::DeserializationError)?;
let expanded_key =
ed25519_dalek::ExpandedSecretKey::from(&ed25519_secretkey);
let mut expanded_keypart = [0u8; 32];
expanded_keypart.copy_from_slice(&expanded_key.to_bytes()[..32]);
let potential_x25519 = x25519::PrivateKey::from(expanded_keypart);
// This checks for x25519 clamping & reduction, which is an RFC
// requirement
if potential_x25519.to_bytes()[..] != expanded_key.to_bytes()[..32] {
Err(CryptoMaterialError::DeserializationError)
} else {
Ok(potential_x25519)
}
}
}
impl PublicKey {
/// Obtain a slice reference to the underlying bytearray
pub fn as_slice(&self) -> &[u8] { &self.0 }
/// Deserialize an X25119 PublicKey from its representation as an
/// Ed25519PublicKey, following the XEdDSA approach. This is meant to
/// compensate for the poor key storage capabilities of key management
/// solutions, and NOT to promote double usage of keys under several
/// schemes, which would lead to BAD vulnerabilities.
pub fn from_ed25519_public_bytes(
ed25519_bytes: &[u8],
) -> Result<Self, CryptoMaterialError> {
if ed25519_bytes.len() != 32 {
return Err(CryptoMaterialError::DeserializationError);
}
let ed_point =
curve25519_dalek::edwards::CompressedEdwardsY::from_slice(
ed25519_bytes,
)
.decompress()
.ok_or(CryptoMaterialError::DeserializationError)?;
Ok(x25519::PublicKey::from(ed_point.to_montgomery().to_bytes()))
}
}
//
// Traits implementations
// ======================
//
// private key part
impl std::convert::From<[u8; PRIVATE_KEY_SIZE]> for PrivateKey {
fn from(private_key_bytes: [u8; PRIVATE_KEY_SIZE]) -> Self {
Self(x25519_dalek::StaticSecret::from(private_key_bytes))
}
}
impl std::convert::TryFrom<&[u8]> for PrivateKey {
type Error = traits::CryptoMaterialError;
fn try_from(private_key_bytes: &[u8]) -> Result<Self, Self::Error> {
let private_key_bytes: [u8; PRIVATE_KEY_SIZE] = private_key_bytes
.try_into()
.map_err(|_| traits::CryptoMaterialError::DeserializationError)?;
Ok(Self(x25519_dalek::StaticSecret::from(private_key_bytes)))
}
}
impl traits::PrivateKey for PrivateKey {
type PublicKeyMaterial = PublicKey;
}
impl traits::Uniform for PrivateKey {
fn generate<R>(rng: &mut R) -> Self
where R: RngCore + CryptoRng {
Self(x25519_dalek::StaticSecret::new(rng))
}
}
// TODO: should this be gated under test flag? (mimoo)
impl traits::ValidCryptoMaterial for PrivateKey {
fn to_bytes(&self) -> Vec<u8> { self.0.to_bytes().to_vec() }
}
#[cfg(any(test, feature = "fuzzing"))]
impl PartialEq for PrivateKey {
fn eq(&self, other: &Self) -> bool { self.to_bytes() == other.to_bytes() }
}
#[cfg(any(test, feature = "fuzzing"))]
impl proptest::arbitrary::Arbitrary for PrivateKey {
type Parameters = ();
type Strategy = proptest::strategy::BoxedStrategy<Self>;
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
use proptest::strategy::Strategy as _;
proptest::arbitrary::any::<[u8; 32]>()
.prop_map(PrivateKey::from)
.boxed()
}
}
// public key part
impl From<&PrivateKey> for PublicKey {
fn from(private_key: &PrivateKey) -> Self { private_key.public_key() }
}
impl std::convert::From<[u8; PUBLIC_KEY_SIZE]> for PublicKey {
fn from(public_key_bytes: [u8; PUBLIC_KEY_SIZE]) -> Self {
Self(public_key_bytes)
}
}
impl std::convert::TryFrom<&[u8]> for PublicKey {
type Error = traits::CryptoMaterialError;
fn try_from(public_key_bytes: &[u8]) -> Result<Self, Self::Error> {
let public_key_bytes: [u8; PUBLIC_KEY_SIZE] = public_key_bytes
.try_into()
.map_err(|_| traits::CryptoMaterialError::WrongLengthError)?;
Ok(Self(public_key_bytes))
}
}
impl traits::PublicKey for PublicKey {
type PrivateKeyMaterial = PrivateKey;
}
impl traits::ValidCryptoMaterial for PublicKey {
fn to_bytes(&self) -> Vec<u8> { self.0.to_vec() }
}
impl std::fmt::Display for PublicKey {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", hex::encode(&self.0))
}
}
impl std::fmt::Debug for PublicKey {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "x25519::PublicKey({})", self)
}
}
#[cfg(any(test, feature = "fuzzing"))]
use crate::test_utils::{self, KeyPair};
#[cfg(any(test, feature = "fuzzing"))]
use proptest::prelude::*;
/// Produces a uniformly random ed25519 keypair from a seed
#[cfg(any(test, feature = "fuzzing"))]
pub fn keypair_strategy(
) -> impl Strategy<Value = KeyPair<PrivateKey, PublicKey>> {
test_utils::uniform_keypair_strategy::<PrivateKey, PublicKey>()
}