1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/
//! This module provides a generic set of traits for dealing with cryptographic
//! primitives.
//!
//! For examples on how to use these traits, see the implementations of the
//! `ed25519` modules.
use crate::{hash::CryptoHash, HashValue};
use anyhow::Result;
use core::convert::{From, TryFrom};
use rand::{rngs::StdRng, CryptoRng, RngCore, SeedableRng};
use serde::{de::DeserializeOwned, Serialize};
use std::{fmt::Debug, hash::Hash};
use thiserror::Error;
/// An error type for key and signature validation issues, see
/// [`ValidCryptoMaterial`][ValidCryptoMaterial].
///
/// This enum reflects there are two interesting causes of validation
/// failure for the ingestion of key or signature material: deserialization
/// errors (often, due to mangled material or curve equation failure for ECC)
/// and validation errors (material recognizable but unacceptable for use,
/// e.g. unsafe).
#[derive(Clone, Debug, PartialEq, Eq, Error)]
#[error("{:?}", self)]
pub enum CryptoMaterialError {
/// Struct to be signed does not serialize correctly.
SerializationError,
/// Key or signature material does not deserialize correctly.
DeserializationError,
/// Key or signature material deserializes, but is otherwise not valid.
ValidationError,
/// Key, threshold or signature material does not have the expected size.
WrongLengthError,
/// Part of the signature or key is not canonical resulting to malleability
/// issues.
CanonicalRepresentationError,
/// A curve point (i.e., a public key) lies on a small group.
SmallSubgroupError,
/// A curve point (i.e., a public key) does not satisfy the curve equation.
PointNotOnCurveError,
/// BitVec errors in accountable multi-sig schemes.
BitVecError(String),
/// bls aggerate error
AggregateError,
}
/// The serialized length of the data that enables macro derived serialization
/// and deserialization.
pub trait Length {
/// The serialized length of the data
fn length(&self) -> usize;
}
/// Key or more generally crypto material with a notion of byte validation.
///
/// A type family for material that knows how to serialize and
/// deserialize, as well as validate byte-encoded material. The
/// validation must be implemented as a [`TryFrom`][TryFrom] which
/// classifies its failures against the above
/// [`CryptoMaterialError`][CryptoMaterialError].
///
/// This provides an implementation for a validation that relies on a
/// round-trip to bytes and corresponding [`TryFrom`][TryFrom].
pub trait ValidCryptoMaterial:
// The for<'a> exactly matches the assumption "deserializable from any lifetime".
for<'a> TryFrom<&'a [u8], Error = CryptoMaterialError> + Serialize + DeserializeOwned
{
/// Convert the valid crypto material to bytes.
fn to_bytes(&self) -> Vec<u8>;
}
/// An extension to to/from Strings for
/// [`ValidCryptoMaterial`][ValidCryptoMaterial].
///
/// Relies on [`hex`][::hex] for string encoding / decoding.
/// No required fields, provides a default implementation.
pub trait ValidCryptoMaterialStringExt: ValidCryptoMaterial {
/// When trying to convert from bytes, we simply decode the string into
/// bytes before checking if we can convert.
fn from_encoded_string(
encoded_str: &str,
) -> std::result::Result<Self, CryptoMaterialError> {
let bytes_out = ::hex::decode(encoded_str);
// We defer to `try_from` to make sure we only produce valid crypto
// materials.
bytes_out
// We reinterpret a failure to serialize: key is mangled someway.
.or(Err(CryptoMaterialError::DeserializationError))
.and_then(|ref bytes| Self::try_from(bytes))
}
/// A function to encode into hex-string after serializing.
fn to_encoded_string(&self) -> Result<String> {
Ok(::hex::encode(&self.to_bytes()))
}
}
// There's nothing required in this extension, so let's just derive it
// for anybody that has a ValidCryptoMaterial.
impl<T: ValidCryptoMaterial> ValidCryptoMaterialStringExt for T {}
/// A type family for key material that should remain secret and has an
/// associated type of the [`PublicKey`][PublicKey] family.
pub trait PrivateKey: Sized {
/// We require public / private types to be coupled, i.e. their
/// associated type is each other.
type PublicKeyMaterial: PublicKey<PrivateKeyMaterial = Self>;
/// Returns the associated public key
fn public_key(&self) -> Self::PublicKeyMaterial { self.into() }
}
/// A type family of valid keys that know how to sign.
///
/// This trait has a requirement on a `pub(crate)` marker trait meant to
/// specifically limit its implementations to the present crate.
///
/// A trait for a [`ValidCryptoMaterial`][ValidCryptoMaterial] which knows how
/// to sign a message, and return an associated `Signature` type.
pub trait SigningKey:
PrivateKey<PublicKeyMaterial = <Self as SigningKey>::VerifyingKeyMaterial>
+ ValidCryptoMaterial
+ private::Sealed
{
/// The associated verifying key type for this signing key.
type VerifyingKeyMaterial: VerifyingKey<SigningKeyMaterial = Self>;
/// The associated signature type for this signing key.
type SignatureMaterial: Signature<SigningKeyMaterial = Self>;
/// Signs an object that has an distinct domain-separation hasher and
/// that we know how to serialize. There is no pre-hashing into a
/// `HashValue` to be done by the caller.
///
/// Note: this assumes serialization is unfaillible. See
/// diem_common::bcs::ser for a discussion of this assumption.
fn sign<T: CryptoHash + Serialize>(
&self, message: &T,
) -> Self::SignatureMaterial;
/// Signs a non-hash input message. For testing only.
#[cfg(any(test, feature = "fuzzing"))]
fn sign_arbitrary_message(&self, message: &[u8])
-> Self::SignatureMaterial;
/// Returns the associated verifying key
fn verifying_key(&self) -> Self::VerifyingKeyMaterial { self.public_key() }
}
/// A type for key material that can be publicly shared, and in asymmetric
/// fashion, can be obtained from a [`PrivateKey`][PrivateKey]
/// reference.
/// This convertibility requirement ensures the existence of a
/// deterministic, canonical public key construction from a private key.
pub trait PublicKey: Sized + Clone + Eq + Hash +
// This unsightly turbofish type parameter is the precise constraint
// needed to require that there exists an
//
// ```
// impl From<&MyPrivateKeyMaterial> for MyPublicKeyMaterial
// ```
//
// declaration, for any `MyPrivateKeyMaterial`, `MyPublicKeyMaterial`
// on which we register (respectively) `PublicKey` and `PrivateKey`
// implementations.
for<'a> From<&'a <Self as PublicKey>::PrivateKeyMaterial> {
/// We require public / private types to be coupled, i.e. their
/// associated type is each other.
type PrivateKeyMaterial: PrivateKey<PublicKeyMaterial = Self>;
}
/// A type family of public keys that are used for signing.
///
/// This trait has a requirement on a `pub(crate)` marker trait meant to
/// specifically limit its implementations to the present crate.
///
/// It is linked to a type of the Signature family, which carries the
/// verification implementation.
pub trait VerifyingKey:
PublicKey<PrivateKeyMaterial = <Self as VerifyingKey>::SigningKeyMaterial>
+ ValidCryptoMaterial
+ private::Sealed
{
/// The associated signing key type for this verifying key.
type SigningKeyMaterial: SigningKey<VerifyingKeyMaterial = Self>;
/// The associated signature type for this verifying key.
type SignatureMaterial: Signature<VerifyingKeyMaterial = Self>;
/// We provide the striaghtfoward implementation which dispatches to the
/// signature.
fn verify_struct_signature<T: CryptoHash + Serialize>(
&self, message: &T, signature: &Self::SignatureMaterial,
) -> Result<()> {
signature.verify(message, self)
}
/// We provide the implementation which dispatches to the signature.
fn batch_verify<T: CryptoHash + Serialize>(
message: &T, keys_and_signatures: Vec<(Self, Self::SignatureMaterial)>,
) -> Result<()> {
Self::SignatureMaterial::batch_verify(message, keys_and_signatures)
}
}
/// A type family for signature material that knows which public key type
/// is needed to verify it, and given such a public key, knows how to
/// verify.
///
/// This trait simply requires an association to some type of the
/// [`PublicKey`][PublicKey] family of which we are the `SignatureMaterial`.
///
/// This trait has a requirement on a `pub(crate)` marker trait meant to
/// specifically limit its implementations to the present crate.
///
/// It should be possible to write a generic signature function that
/// checks signature material passed as `&[u8]` and only returns Ok when
/// that material de-serializes to a signature of the expected concrete
/// scheme. This would be done as an extension trait of
/// [`Signature`][Signature].
pub trait Signature:
for<'a> TryFrom<&'a [u8], Error = CryptoMaterialError>
+ Sized
+ Debug
+ Clone
+ Eq
+ Hash
+ private::Sealed
{
/// The associated verifying key type for this signature.
type VerifyingKeyMaterial: VerifyingKey<SignatureMaterial = Self>;
/// The associated signing key type for this signature
type SigningKeyMaterial: SigningKey<SignatureMaterial = Self>;
/// Verification for a struct we unabmiguously know how to serialize and
/// that we have a domain separation prefix for.
fn verify<T: CryptoHash + Serialize>(
&self, message: &T, public_key: &Self::VerifyingKeyMaterial,
) -> Result<()>;
/// Native verification function.
fn verify_arbitrary_msg(
&self, message: &[u8], public_key: &Self::VerifyingKeyMaterial,
) -> Result<()>;
/// The implementer can override a batch verification implementation
/// that by default iterates over each signature. More efficient
/// implementations exist and should be implemented for many schemes.
fn batch_verify<T: CryptoHash + Serialize>(
message: &T,
keys_and_signatures: Vec<(Self::VerifyingKeyMaterial, Self)>,
) -> Result<()> {
for (key, signature) in keys_and_signatures {
signature.verify(message, &key)?
}
Ok(())
}
}
/// Public key for VRF
pub trait VRFPublicKey:
PublicKey<PrivateKeyMaterial = <Self as VRFPublicKey>::PrivateKeyMaterial>
+ ValidCryptoMaterial
+ private::Sealed
{
/// The associated private key type for this public key.
type PrivateKeyMaterial: VRFPrivateKey<PublicKeyMaterial = Self>;
/// The associated proof type for this public key.
type ProofMaterial: VRFProof<PublicKeyMaterial = Self>;
/// Verify if `proof` if generated from `seed` by the private key of this
/// public key.
///
/// If successful, return the VRF hash output.
fn verify_proof(
&self, seed: &[u8], proof: &Self::ProofMaterial,
) -> Result<HashValue> {
proof.verify(seed, &self)
}
}
/// Private key for VRF
pub trait VRFPrivateKey:
PrivateKey<PublicKeyMaterial = <Self as VRFPrivateKey>::PublicKeyMaterial>
+ ValidCryptoMaterial
+ private::Sealed
{
/// The associated public key type for this private key.
type PublicKeyMaterial: VRFPublicKey<PrivateKeyMaterial = Self>;
/// The associated proof type for this private key.
type ProofMaterial: VRFProof<PrivateKeyMaterial = Self>;
/// Generate a random number (hash) with a proof for verification.
fn compute(&self, seed: &[u8]) -> Result<Self::ProofMaterial>;
}
/// The proof of VRF
pub trait VRFProof:
for<'a> TryFrom<&'a [u8], Error = CryptoMaterialError>
+ Sized
+ Debug
+ Clone
+ Eq
+ Hash
+ private::Sealed
{
/// The associated public key type for this proof.
type PublicKeyMaterial: VRFPublicKey<ProofMaterial = Self>;
/// The associated private key type for this proof.
type PrivateKeyMaterial: VRFPrivateKey<ProofMaterial = Self>;
/// Convert the proof to a verifiable random number (hash).
fn to_hash(&self) -> Result<HashValue>;
/// Verify if the proof is generated from `seed` by the private key of
/// `public_key`.
///
/// If successful, return the VRF hash output.
fn verify(
&self, seed: &[u8], public_key: &Self::PublicKeyMaterial,
) -> Result<HashValue>;
}
/// A type family for schemes which know how to generate key material from
/// a cryptographically-secure [`CryptoRng`][::rand::CryptoRng].
pub trait Uniform {
/// Generate key material from an RNG. This should generally not be used for
/// production purposes even with a good source of randomness. When
/// possible use hardware crypto to generate and store private keys.
fn generate<R>(rng: &mut R) -> Self
where R: RngCore + CryptoRng;
/// Generate a random key using the shared TEST_SEED
fn generate_for_testing() -> Self
where Self: Sized {
let mut rng: StdRng =
SeedableRng::from_seed(crate::test_utils::TEST_SEED);
Self::generate(&mut rng)
}
}
/// A type family with a by-convention notion of genesis private key.
pub trait Genesis: PrivateKey {
/// Produces the genesis private key.
fn genesis() -> Self;
}
/// The trait for VDF.
pub trait VerifiableDelayFunction {
/// solve inputted `challenge` with a given `difficulty`, and output a
/// solution.
fn solve(&self, challenge: &[u8], difficulty: u64) -> Result<Vec<u8>>;
/// Verify that the given `alleged_solution` is indeed a valid solution.
fn verify(
&self, challenge: &[u8], difficulty: u64, alleged_solution: &[u8],
) -> Result<()>;
}
/// A pub(crate) mod hiding a Sealed trait and its implementations, allowing
/// us to make sure implementations are constrained to the crypto crate.
// See https://rust-lang.github.io/api-guidelines/future-proofing.html#sealed-traits-protect-against-downstream-implementations-c-sealed
pub(crate) mod private {
pub trait Sealed {}
// Implement for the ed25519, multi-ed25519 signatures
impl Sealed for crate::ed25519::Ed25519PrivateKey {}
impl Sealed for crate::ed25519::Ed25519PublicKey {}
impl Sealed for crate::ed25519::Ed25519Signature {}
impl Sealed for crate::multi_ed25519::MultiEd25519PrivateKey {}
impl Sealed for crate::multi_ed25519::MultiEd25519PublicKey {}
impl Sealed for crate::multi_ed25519::MultiEd25519Signature {}
impl Sealed for crate::bls::BLSPublicKey {}
impl Sealed for crate::bls::BLSPrivateKey {}
impl Sealed for crate::bls::BLSSignature {}
impl Sealed for crate::multi_bls::MultiBLSPublicKey {}
impl Sealed for crate::multi_bls::MultiBLSPrivateKey {}
impl Sealed for crate::multi_bls::MultiBLSSignature {}
impl Sealed for crate::ec_vrf::EcVrfPublicKey {}
impl Sealed for crate::ec_vrf::EcVrfPrivateKey {}
impl Sealed for crate::ec_vrf::EcVrfProof {}
}
/// Hash the vrf output and a nonce within the proposer's voting power to
/// compute a hash value as its priority.
/// This is used in both choosing leaders in a round and electing committees in
/// a term.
pub fn vrf_number_with_nonce(vrf_output: &HashValue, nonce: u64) -> HashValue {
HashValue::sha3_256_of(
&[vrf_output.as_ref() as &[u8], &nonce.to_be_bytes()].concat(),
)
}