1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0

// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/

//! Internal module containing convenience utility functions mainly for testing

use crate::traits::Uniform;
use serde::{Deserialize, Serialize};

/// A deterministic seed for PRNGs related to keys
pub const TEST_SEED: [u8; 32] = [0u8; 32];

/// A keypair consisting of a private and public key
#[cfg_attr(feature = "cloneable-private-keys", derive(Clone))]
#[derive(Serialize, Deserialize, PartialEq, Eq)]
pub struct KeyPair<S, P>
where for<'a> P: From<&'a S>
{
    /// the private key component
    pub private_key: S,
    /// the public key component
    pub public_key: P,
}

impl<S, P> From<S> for KeyPair<S, P>
where for<'a> P: From<&'a S>
{
    fn from(private_key: S) -> Self {
        KeyPair {
            public_key: (&private_key).into(),
            private_key,
        }
    }
}

impl<S, P> Uniform for KeyPair<S, P>
where
    S: Uniform,
    for<'a> P: From<&'a S>,
{
    fn generate<R>(rng: &mut R) -> Self
    where R: ::rand::RngCore + ::rand::CryptoRng {
        let private_key = S::generate(rng);
        private_key.into()
    }
}

/// A pair consisting of a private and public key
impl<S, P> Uniform for (S, P)
where
    S: Uniform,
    for<'a> P: From<&'a S>,
{
    fn generate<R>(rng: &mut R) -> Self
    where R: ::rand::RngCore + ::rand::CryptoRng {
        let private_key = S::generate(rng);
        let public_key = (&private_key).into();
        (private_key, public_key)
    }
}

impl<Priv, Pub> std::fmt::Debug for KeyPair<Priv, Pub>
where
    Priv: Serialize,
    Pub: Serialize + for<'a> From<&'a Priv>,
{
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let mut v = bcs::to_bytes(&self.private_key).unwrap();
        v.extend(&bcs::to_bytes(&self.public_key).unwrap());
        write!(f, "{}", hex::encode(&v[..]))
    }
}

#[cfg(any(test, feature = "fuzzing"))]
use proptest::prelude::*;
#[cfg(any(test, feature = "fuzzing"))]
use rand::{rngs::StdRng, SeedableRng};

/// Produces a uniformly random keypair from a seed
#[cfg(any(test, feature = "fuzzing"))]
pub fn uniform_keypair_strategy<Priv, Pub>(
) -> impl Strategy<Value = KeyPair<Priv, Pub>>
where
    Pub: Serialize + for<'a> From<&'a Priv>,
    Priv: Serialize + Uniform,
{
    // The no_shrink is because keypairs should be fixed -- shrinking would
    // cause a different keypair to be generated, which appears to not be
    // very useful.
    any::<[u8; 32]>()
        .prop_map(|seed| {
            let mut rng = StdRng::from_seed(seed);
            KeyPair::<Priv, Pub>::generate(&mut rng)
        })
        .no_shrink()
}

/// This struct provides a means of testing signing and verification through
/// BCS serialization and domain separation
#[cfg(any(test, feature = "fuzzing"))]
#[derive(Debug, Serialize, Deserialize)]
pub struct TestDiemCrypto(pub String);

// the following block is macro expanded from derive(CryptoHasher,
// BCSCryptoHash)

/// Cryptographic hasher for an BCS-serializable #item
#[cfg(any(test, feature = "fuzzing"))]
pub struct TestDiemCryptoHasher(crate::hash::DefaultHasher);
#[cfg(any(test, feature = "fuzzing"))]
impl ::core::clone::Clone for TestDiemCryptoHasher {
    #[inline]
    fn clone(&self) -> TestDiemCryptoHasher {
        match *self {
            TestDiemCryptoHasher(ref __self_0_0) => TestDiemCryptoHasher(
                ::core::clone::Clone::clone(&(*__self_0_0)),
            ),
        }
    }
}
#[cfg(any(test, feature = "fuzzing"))]
static TEST_DIEM_CRYPTO_SEED: crate::_once_cell::sync::OnceCell<[u8; 32]> =
    crate::_once_cell::sync::OnceCell::new();
#[cfg(any(test, feature = "fuzzing"))]
impl TestDiemCryptoHasher {
    fn new() -> Self {
        let name = crate::_serde_name::trace_name::<TestDiemCrypto>().expect(
            "The `CryptoHasher` macro only applies to structs and enums",
        );
        TestDiemCryptoHasher(crate::hash::DefaultHasher::new(&name.as_bytes()))
    }
}
#[cfg(any(test, feature = "fuzzing"))]
static TEST_DIEM_CRYPTO_HASHER: crate::_once_cell::sync::Lazy<
    TestDiemCryptoHasher,
> = crate::_once_cell::sync::Lazy::new(TestDiemCryptoHasher::new);
#[cfg(any(test, feature = "fuzzing"))]
impl std::default::Default for TestDiemCryptoHasher {
    fn default() -> Self { TEST_DIEM_CRYPTO_HASHER.clone() }
}
#[cfg(any(test, feature = "fuzzing"))]
impl crate::hash::CryptoHasher for TestDiemCryptoHasher {
    fn seed() -> &'static [u8; 32] {
        TEST_DIEM_CRYPTO_SEED.get_or_init(|| {
            let name = crate::_serde_name::trace_name::<TestDiemCrypto>()
                .expect("The `CryptoHasher` macro only applies to structs and enums.")
                .as_bytes();
            crate::hash::DefaultHasher::prefixed_hash(&name)
        })
    }

    fn update(&mut self, bytes: &[u8]) { self.0.update(bytes); }

    fn finish(self) -> crate::hash::HashValue { self.0.finish() }
}
#[cfg(any(test, feature = "fuzzing"))]
impl std::io::Write for TestDiemCryptoHasher {
    fn write(&mut self, bytes: &[u8]) -> std::io::Result<usize> {
        self.0.update(bytes);
        Ok(bytes.len())
    }

    fn flush(&mut self) -> std::io::Result<()> { Ok(()) }
}
#[cfg(any(test, feature = "fuzzing"))]
impl crate::hash::CryptoHash for TestDiemCrypto {
    type Hasher = TestDiemCryptoHasher;

    fn hash(&self) -> crate::hash::HashValue {
        use crate::hash::CryptoHasher;
        let mut state = Self::Hasher::default();
        bcs::serialize_into(&mut state, &self)
            .expect("BCS serialization of TestDiemCrypto should not fail");
        state.finish()
    }
}

/// Produces a random TestDiemCrypto signable / verifiable struct.
#[cfg(any(test, feature = "fuzzing"))]
pub fn random_serializable_struct() -> impl Strategy<Value = TestDiemCrypto> {
    (String::arbitrary()).prop_map(TestDiemCrypto).no_shrink()
}