1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/
//! Noise is a [protocol framework](https://noiseprotocol.org/) which we use in Diem to
//! encrypt and authenticate communications between nodes of the network.
//!
//! This file implements a stripped-down version of
//! Noise_IK_25519_AESGCM_SHA256. This means that only the parts that we care
//! about (the IK handshake) are implemented.
//!
//! Note that to benefit from hardware support for AES, you must build this
//! crate with the following flags: `RUSTFLAGS="-Ctarget-cpu=skylake
//! -Ctarget-feature=+aes,+sse2,+sse4.1,+ssse3"`.
//!
//! Usage example:
//!
//! ```
//! use diem_crypto::{noise, x25519, traits::*};
//! use rand::prelude::*;
//!
//! # fn main() -> Result<(), diem_crypto::noise::NoiseError> {
//! let mut rng = rand::thread_rng();
//! let initiator_static = x25519::PrivateKey::generate(&mut rng);
//! let responder_static = x25519::PrivateKey::generate(&mut rng);
//! let responder_public = responder_static.public_key();
//!
//! let initiator = noise::NoiseConfig::new(initiator_static);
//! let responder = noise::NoiseConfig::new(responder_static);
//!
//! let payload1 = b"the client can send an optional payload in the first message";
//! let mut buffer = vec![0u8; noise::handshake_init_msg_len(payload1.len())];
//! let initiator_state = initiator
//! .initiate_connection(&mut rng, b"prologue", responder_public, Some(payload1), &mut buffer)?;
//!
//! let payload2 = b"the server can send an optional payload as well as part of the handshake";
//! let mut buffer2 = vec![0u8; noise::handshake_resp_msg_len(payload2.len())];
//! let (received_payload, mut responder_session) = responder
//! .respond_to_client_and_finalize(&mut rng, b"prologue", &buffer, Some(payload2), &mut buffer2)?;
//! assert_eq!(received_payload.as_slice(), &payload1[..]);
//!
//! let (received_payload, mut initiator_session) = initiator
//! .finalize_connection(initiator_state, &buffer2)?;
//! assert_eq!(received_payload.as_slice(), &payload2[..]);
//!
//! let message_sent = b"hello world".to_vec();
//! let mut buffer = message_sent.clone();
//! let auth_tag = initiator_session
//! .write_message_in_place(&mut buffer)?;
//! buffer.extend_from_slice(&auth_tag);
//!
//! let received_message = responder_session
//! .read_message_in_place(&mut buffer)?;
//!
//! assert_eq!(received_message, message_sent.as_slice());
//!
//! # Ok(())
//! # }
//! ```
#![allow(clippy::integer_arithmetic)]
use crate::{hash::HashValue, hkdf::Hkdf, traits::Uniform as _, x25519};
use aes_gcm::{
aead::{generic_array::GenericArray, Aead, AeadInPlace, NewAead, Payload},
Aes256Gcm,
};
use sha2::Digest;
use std::{
convert::TryFrom as _,
io::{Cursor, Read as _, Write as _},
};
use thiserror::Error;
//
// Useful constants
// ----------------
//
/// A noise message cannot be larger than 65535 bytes as per the specification.
pub const MAX_SIZE_NOISE_MSG: usize = 65535;
/// The authentication tag length of AES-GCM.
pub const AES_GCM_TAGLEN: usize = 16;
/// The only Noise handshake protocol that we implement in this file.
const PROTOCOL_NAME: &[u8] = b"Noise_IK_25519_AESGCM_SHA256\0\0\0\0";
/// The nonce size we use for AES-GCM.
const AES_NONCE_SIZE: usize = 12;
/// A handy const fn to get the expanded size of a plaintext after encryption
pub const fn encrypted_len(plaintext_len: usize) -> usize {
plaintext_len + AES_GCM_TAGLEN
}
/// A handy const fn to get the size of a plaintext from a ciphertext size
pub const fn decrypted_len(ciphertext_len: usize) -> usize {
ciphertext_len - AES_GCM_TAGLEN
}
/// A handy const fn to get the size of the first handshake message
pub const fn handshake_init_msg_len(payload_len: usize) -> usize {
// e
let e_len = x25519::PUBLIC_KEY_SIZE;
// encrypted s
let enc_s_len = encrypted_len(x25519::PUBLIC_KEY_SIZE);
// encrypted payload
let enc_payload_len = encrypted_len(payload_len);
//
e_len + enc_s_len + enc_payload_len
}
/// A handy const fn to get the size of the second handshake message
pub const fn handshake_resp_msg_len(payload_len: usize) -> usize {
// e
let e_len = x25519::PUBLIC_KEY_SIZE;
// encrypted payload
let enc_payload_len = encrypted_len(payload_len);
//
e_len + enc_payload_len
}
/// This implementation relies on the fact that the hash function used has a 256-bit output
#[rustfmt::skip]
const _: [(); 32] = [(); HashValue::LENGTH];
//
// Errors
// ------
//
/// A NoiseError enum represents the different types of error that noise can
/// return to users of the crate
#[derive(Debug, Error)]
pub enum NoiseError {
/// the received message is too short to contain the expected data
#[error(
"noise: the received message is too short to contain the expected data"
)]
MsgTooShort,
/// HKDF has failed (in practice there is no reason for HKDF to fail)
#[error("noise: HKDF has failed")]
Hkdf,
/// encryption has failed (in practice there is no reason for encryption to
/// fail)
#[error("noise: encryption has failed")]
Encrypt,
/// could not decrypt the received data (most likely the data was tampered
/// with
#[error("noise: could not decrypt the received data")]
Decrypt,
/// the public key received is of the wrong format
#[error("noise: the public key received is of the wrong format")]
WrongPublicKeyReceived,
/// session was closed due to decrypt error
#[error("noise: session was closed due to decrypt error")]
SessionClosed,
/// the payload that we are trying to send is too large
#[error("noise: the payload that we are trying to send is too large")]
PayloadTooLarge,
/// the message we received is too large
#[error("noise: the message we received is too large")]
ReceivedMsgTooLarge,
/// the response buffer passed as argument is too small
#[error("noise: the response buffer passed as argument is too small")]
ResponseBufferTooSmall,
/// the nonce exceeds the maximum u64 value (in practice this should not
/// happen)
#[error("noise: the nonce exceeds the maximum u64 value")]
NonceOverflow,
}
//
// helpers
// -------
//
fn hash(data: &[u8]) -> Vec<u8> { sha2::Sha256::digest(data).to_vec() }
fn hkdf(
ck: &[u8], dh_output: Option<&[u8]>,
) -> Result<(Vec<u8>, Vec<u8>), NoiseError> {
let dh_output = dh_output.unwrap_or_else(|| &[]);
let hkdf_output = Hkdf::<sha2::Sha256>::extract_then_expand(
Some(ck),
dh_output,
None,
64,
);
let hkdf_output = hkdf_output.map_err(|_| NoiseError::Hkdf)?;
let (k1, k2) = hkdf_output.split_at(32);
Ok((k1.to_vec(), k2.to_vec()))
}
fn mix_hash(h: &mut Vec<u8>, data: &[u8]) {
h.extend_from_slice(data);
*h = hash(h);
}
fn mix_key(ck: &mut Vec<u8>, dh_output: &[u8]) -> Result<Vec<u8>, NoiseError> {
let (new_ck, k) = hkdf(ck, Some(dh_output))?;
*ck = new_ck;
Ok(k)
}
//
// Noise implementation
// --------------------
//
/// A key holder structure used for both initiators and responders.
#[derive(Debug)]
pub struct NoiseConfig {
private_key: x25519::PrivateKey,
public_key: x25519::PublicKey,
}
/// Refer to the Noise protocol framework specification in order to understand
/// these fields.
#[cfg_attr(test, derive(Clone))]
pub struct InitiatorHandshakeState {
/// rolling hash
h: Vec<u8>,
/// chaining key
ck: Vec<u8>,
/// ephemeral key
e: x25519::PrivateKey,
/// remote static key used
rs: x25519::PublicKey,
}
/// Refer to the Noise protocol framework specification in order to understand
/// these fields.
#[cfg_attr(test, derive(Clone))]
pub struct ResponderHandshakeState {
/// rolling hash
h: Vec<u8>,
/// chaining key
ck: Vec<u8>,
/// remote static key received
rs: x25519::PublicKey,
/// remote ephemeral key receiced
re: x25519::PublicKey,
}
impl NoiseConfig {
/// A peer must create a NoiseConfig through this function before being able
/// to connect with other peers.
pub fn new(private_key: x25519::PrivateKey) -> Self {
// we could take a public key as argument, and it would be faster, but
// this is cleaner
let public_key = private_key.public_key();
Self {
private_key,
public_key,
}
}
/// Handy getter to access the configuration's public key
pub fn public_key(&self) -> x25519::PublicKey { self.public_key }
//
// Initiator
// ---------
/// An initiator can use this function to initiate a handshake with a known
/// responder.
pub fn initiate_connection(
&self, rng: &mut (impl rand::RngCore + rand::CryptoRng),
prologue: &[u8], remote_public: x25519::PublicKey,
payload: Option<&[u8]>, response_buffer: &mut [u8],
) -> Result<InitiatorHandshakeState, NoiseError> {
// checks
let payload_len = payload.map(<[u8]>::len).unwrap_or(0);
let buffer_size_required = handshake_init_msg_len(payload_len);
if buffer_size_required > MAX_SIZE_NOISE_MSG {
return Err(NoiseError::PayloadTooLarge);
}
if response_buffer.len() < buffer_size_required {
return Err(NoiseError::ResponseBufferTooSmall);
}
// initialize
let mut h = PROTOCOL_NAME.to_vec();
let mut ck = PROTOCOL_NAME.to_vec();
let rs = remote_public; // for naming consistency with the specification
mix_hash(&mut h, &prologue);
mix_hash(&mut h, rs.as_slice());
// -> e
let e = x25519::PrivateKey::generate(rng);
let e_pub = e.public_key();
mix_hash(&mut h, e_pub.as_slice());
let mut response_buffer = Cursor::new(response_buffer);
response_buffer
.write(e_pub.as_slice())
.map_err(|_| NoiseError::ResponseBufferTooSmall)?;
// -> es
let dh_output = e.diffie_hellman(&rs);
let k = mix_key(&mut ck, &dh_output)?;
// -> s
let aead = Aes256Gcm::new(GenericArray::from_slice(&k));
let msg_and_ad = Payload {
msg: self.public_key.as_slice(),
aad: &h,
};
let nonce = GenericArray::from_slice(&[0u8; AES_NONCE_SIZE]);
let encrypted_static = aead
.encrypt(nonce, msg_and_ad)
.map_err(|_| NoiseError::Encrypt)?;
mix_hash(&mut h, &encrypted_static);
response_buffer
.write(&encrypted_static)
.map_err(|_| NoiseError::ResponseBufferTooSmall)?;
// -> ss
let dh_output = self.private_key.diffie_hellman(&rs);
let k = mix_key(&mut ck, &dh_output)?;
// -> payload
let aead = Aes256Gcm::new(GenericArray::from_slice(&k));
let msg_and_ad = Payload {
msg: payload.unwrap_or_else(|| &[]),
aad: &h,
};
let nonce = GenericArray::from_slice(&[0u8; AES_NONCE_SIZE]);
let encrypted_payload = aead
.encrypt(nonce, msg_and_ad)
.map_err(|_| NoiseError::Encrypt)?;
mix_hash(&mut h, &encrypted_payload);
response_buffer
.write(&encrypted_payload)
.map_err(|_| NoiseError::ResponseBufferTooSmall)?;
// return
let handshake_state = InitiatorHandshakeState { h, ck, e, rs };
Ok(handshake_state)
}
/// A client can call this to finalize a connection, after receiving an
/// answer from a server.
pub fn finalize_connection(
&self, handshake_state: InitiatorHandshakeState,
received_message: &[u8],
) -> Result<(Vec<u8>, NoiseSession), NoiseError> {
// checks
if received_message.len() > MAX_SIZE_NOISE_MSG {
return Err(NoiseError::ReceivedMsgTooLarge);
}
// retrieve handshake state
let InitiatorHandshakeState {
mut h,
mut ck,
e,
rs,
} = handshake_state;
// <- e
let mut re = [0u8; x25519::PUBLIC_KEY_SIZE];
let mut cursor = Cursor::new(received_message);
cursor
.read_exact(&mut re)
.map_err(|_| NoiseError::MsgTooShort)?;
mix_hash(&mut h, &re);
let re = x25519::PublicKey::from(re);
// <- ee
let dh_output = e.diffie_hellman(&re);
mix_key(&mut ck, &dh_output)?;
// <- se
let dh_output = self.private_key.diffie_hellman(&re);
let k = mix_key(&mut ck, &dh_output)?;
// <- payload
let offset = cursor.position() as usize;
let received_encrypted_payload = &cursor.into_inner()[offset..];
let aead = Aes256Gcm::new(GenericArray::from_slice(&k));
let nonce = GenericArray::from_slice(&[0u8; AES_NONCE_SIZE]);
let ct_and_ad = Payload {
msg: received_encrypted_payload,
aad: &h,
};
let received_payload = aead
.decrypt(nonce, ct_and_ad)
.map_err(|_| NoiseError::Decrypt)?;
// split
let (k1, k2) = hkdf(&ck, None)?;
let session = NoiseSession::new(k1, k2, rs);
//
Ok((received_payload, session))
}
//
// Responder
// ---------
// There are two ways to use this API:
// - either use `parse_client_init_message()` followed by
// `respond_to_client()`
// - or use the all-in-one `respond_to_client_and_finalize()`
//
// the reason for the first deconstructed API is that we might want to do
// some validation of the received initiator's public key which might
//
/// A responder can accept a connection by first parsing an initiator
/// message. The function respond_to_client is usually called after this
/// to respond to the initiator.
pub fn parse_client_init_message(
&self, prologue: &[u8], received_message: &[u8],
) -> Result<
(
x25519::PublicKey, // initiator's public key
ResponderHandshakeState, // state to be used in respond_to_client
Vec<u8>, // payload received
),
NoiseError,
> {
// checks
if received_message.len() > MAX_SIZE_NOISE_MSG {
return Err(NoiseError::ReceivedMsgTooLarge);
}
// initialize
let mut h = PROTOCOL_NAME.to_vec();
let mut ck = PROTOCOL_NAME.to_vec();
mix_hash(&mut h, prologue);
mix_hash(&mut h, self.public_key.as_slice());
// buffer message received
let mut cursor = Cursor::new(received_message);
// <- e
let mut re = [0u8; x25519::PUBLIC_KEY_SIZE];
cursor
.read_exact(&mut re)
.map_err(|_| NoiseError::MsgTooShort)?;
mix_hash(&mut h, &re);
let re = x25519::PublicKey::from(re);
// <- es
let dh_output = self.private_key.diffie_hellman(&re);
let k = mix_key(&mut ck, &dh_output)?;
// <- s
let mut encrypted_remote_static =
[0u8; x25519::PUBLIC_KEY_SIZE + AES_GCM_TAGLEN];
cursor
.read_exact(&mut encrypted_remote_static)
.map_err(|_| NoiseError::MsgTooShort)?;
let aead = Aes256Gcm::new(GenericArray::from_slice(&k));
let nonce = GenericArray::from_slice(&[0u8; AES_NONCE_SIZE]);
let ct_and_ad = Payload {
msg: &encrypted_remote_static,
aad: &h,
};
let rs = aead
.decrypt(nonce, ct_and_ad)
.map_err(|_| NoiseError::Decrypt)?;
let rs = x25519::PublicKey::try_from(rs.as_slice())
.map_err(|_| NoiseError::WrongPublicKeyReceived)?;
mix_hash(&mut h, &encrypted_remote_static);
// <- ss
let dh_output = self.private_key.diffie_hellman(&rs);
let k = mix_key(&mut ck, &dh_output)?;
// <- payload
let offset = cursor.position() as usize;
let received_encrypted_payload = &cursor.into_inner()[offset..];
let aead = Aes256Gcm::new(GenericArray::from_slice(&k));
let nonce = GenericArray::from_slice(&[0u8; AES_NONCE_SIZE]);
let ct_and_ad = Payload {
msg: received_encrypted_payload,
aad: &h,
};
let received_payload = aead
.decrypt(nonce, ct_and_ad)
.map_err(|_| NoiseError::Decrypt)?;
mix_hash(&mut h, received_encrypted_payload);
// return
let handshake_state = ResponderHandshakeState { h, ck, rs, re };
Ok((rs, handshake_state, received_payload))
}
/// A responder can respond to an initiator by calling this function with
/// the state obtained, after calling parse_client_init_message
pub fn respond_to_client(
&self, rng: &mut (impl rand::RngCore + rand::CryptoRng),
handshake_state: ResponderHandshakeState, payload: Option<&[u8]>,
response_buffer: &mut [u8],
) -> Result<NoiseSession, NoiseError> {
// checks
let payload_len = payload.map(<[u8]>::len).unwrap_or(0);
let buffer_size_required = handshake_resp_msg_len(payload_len);
if buffer_size_required > MAX_SIZE_NOISE_MSG {
return Err(NoiseError::PayloadTooLarge);
}
if response_buffer.len() < buffer_size_required {
return Err(NoiseError::ResponseBufferTooSmall);
}
// retrieve handshake state
let ResponderHandshakeState {
mut h,
mut ck,
rs,
re,
} = handshake_state;
// -> e
let e = x25519::PrivateKey::generate(rng);
let e_pub = e.public_key();
mix_hash(&mut h, e_pub.as_slice());
let mut response_buffer = Cursor::new(response_buffer);
response_buffer
.write(e_pub.as_slice())
.map_err(|_| NoiseError::ResponseBufferTooSmall)?;
// -> ee
let dh_output = e.diffie_hellman(&re);
mix_key(&mut ck, &dh_output)?;
// -> se
let dh_output = e.diffie_hellman(&rs);
let k = mix_key(&mut ck, &dh_output)?;
// -> payload
let aead = Aes256Gcm::new(GenericArray::from_slice(&k));
let msg_and_ad = Payload {
msg: payload.unwrap_or_else(|| &[]),
aad: &h,
};
let nonce = GenericArray::from_slice(&[0u8; AES_NONCE_SIZE]);
let encrypted_payload = aead
.encrypt(nonce, msg_and_ad)
.map_err(|_| NoiseError::Encrypt)?;
mix_hash(&mut h, &encrypted_payload);
response_buffer
.write(&encrypted_payload)
.map_err(|_| NoiseError::ResponseBufferTooSmall)?;
// split
let (k1, k2) = hkdf(&ck, None)?;
let session = NoiseSession::new(k2, k1, rs);
//
Ok(session)
}
/// This function is a one-call that replaces calling the two functions
/// parse_client_init_message and respond_to_client consecutively
pub fn respond_to_client_and_finalize(
&self, rng: &mut (impl rand::RngCore + rand::CryptoRng),
prologue: &[u8], received_message: &[u8], payload: Option<&[u8]>,
response_buffer: &mut [u8],
) -> Result<
(
Vec<u8>, // the payload the initiator sent
NoiseSession, // The created session
),
NoiseError,
> {
let (_, handshake_state, received_payload) =
self.parse_client_init_message(prologue, received_message)?;
let session = self.respond_to_client(
rng,
handshake_state,
payload,
response_buffer,
)?;
Ok((received_payload, session))
}
}
//
// Post-Handshake
// --------------
/// A NoiseSession is produced after a successful Noise handshake, and can be
/// use to encrypt and decrypt messages to the other peer.
#[cfg_attr(test, derive(Clone))]
pub struct NoiseSession {
/// a session can be marked as invalid if it has seen a decryption failure
valid: bool,
/// the public key of the other peer
remote_public_key: x25519::PublicKey,
/// key used to encrypt messages to the other peer
write_key: Vec<u8>,
/// associated nonce (in practice the maximum u64 value cannot be reached)
write_nonce: u64,
/// key used to decrypt messages received from the other peer
read_key: Vec<u8>,
/// associated nonce (in practice the maximum u64 value cannot be reached)
read_nonce: u64,
}
impl NoiseSession {
fn new(
write_key: Vec<u8>, read_key: Vec<u8>,
remote_public_key: x25519::PublicKey,
) -> Self {
Self {
valid: true,
remote_public_key,
write_key,
write_nonce: 0,
read_key,
read_nonce: 0,
}
}
/// create a dummy session with 0 keys
#[cfg(any(test, feature = "fuzzing"))]
pub fn new_for_testing() -> Self {
Self::new(
vec![0u8; 32],
vec![0u8; 32],
[0u8; x25519::PUBLIC_KEY_SIZE].into(),
)
}
/// obtain remote static public key
pub fn get_remote_static(&self) -> x25519::PublicKey {
self.remote_public_key
}
/// encrypts a message for the other peers (post-handshake)
/// the function encrypts in place, and returns the authentication tag as
/// result
pub fn write_message_in_place(
&mut self, message: &mut [u8],
) -> Result<Vec<u8>, NoiseError> {
// checks
if !self.valid {
return Err(NoiseError::SessionClosed);
}
if message.len() > MAX_SIZE_NOISE_MSG - AES_GCM_TAGLEN {
return Err(NoiseError::PayloadTooLarge);
}
// encrypt in place
let aead = Aes256Gcm::new(GenericArray::from_slice(&self.write_key));
let mut nonce = [0u8; 4].to_vec();
nonce.extend_from_slice(&self.write_nonce.to_be_bytes());
let nonce = GenericArray::from_slice(&nonce);
let authentication_tag = aead
.encrypt_in_place_detached(nonce, b"", message)
.map_err(|_| NoiseError::Encrypt)?;
// increment nonce
self.write_nonce = self
.write_nonce
.checked_add(1)
.ok_or(NoiseError::NonceOverflow)?;
// return a subslice without the authentication tag
Ok(authentication_tag.to_vec())
}
/// decrypts a message from the other peer (post-handshake)
/// the function decrypts in place, and returns a subslice without the auth
/// tag
pub fn read_message_in_place<'a>(
&mut self, message: &'a mut [u8],
) -> Result<&'a [u8], NoiseError> {
// checks
if !self.valid {
return Err(NoiseError::SessionClosed);
}
if message.len() > MAX_SIZE_NOISE_MSG {
self.valid = false;
return Err(NoiseError::ReceivedMsgTooLarge);
}
if message.len() < AES_GCM_TAGLEN {
self.valid = false;
return Err(NoiseError::ResponseBufferTooSmall);
}
// decrypt in place
let aead = Aes256Gcm::new(GenericArray::from_slice(&self.read_key));
let mut nonce = [0u8; 4].to_vec();
nonce.extend_from_slice(&self.read_nonce.to_be_bytes());
let nonce = GenericArray::from_slice(&nonce);
let (buffer, authentication_tag) =
message.split_at_mut(message.len() - AES_GCM_TAGLEN);
let authentication_tag = GenericArray::from_slice(authentication_tag);
aead.decrypt_in_place_detached(nonce, b"", buffer, authentication_tag)
.map_err(|_| {
self.valid = false;
NoiseError::Decrypt
})?;
// increment nonce
self.read_nonce = self
.read_nonce
.checked_add(1)
.ok_or(NoiseError::NonceOverflow)?;
// return a subslice of the buffer representing the decrypted plaintext
Ok(buffer)
}
}
impl std::fmt::Debug for NoiseSession {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "NoiseSession[...]")
}
}