1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0

// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/

//! This module provides an API for the accountable threshold multi-sig
//! PureEdDSA signature scheme over the ed25519 twisted Edwards curve as defined in [RFC8032](https://tools.ietf.org/html/rfc8032).
//!
//! Signature verification also checks and rejects non-canonical signatures.

use crate::{
    ed25519::{
        Ed25519PrivateKey, Ed25519PublicKey, Ed25519Signature,
        ED25519_PRIVATE_KEY_LENGTH, ED25519_PUBLIC_KEY_LENGTH,
        ED25519_SIGNATURE_LENGTH,
    },
    hash::{CryptoHash, CryptoHasher},
    traits::*,
};
use anyhow::{anyhow, Result};
use core::convert::TryFrom;
use diem_crypto_derive::{
    DeserializeKey, SerializeKey, SilentDebug, SilentDisplay,
};
use mirai_annotations::*;
use rand::Rng;
use serde::Serialize;
use std::{convert::TryInto, fmt};

const MAX_NUM_OF_KEYS: usize = 32;
const BITMAP_NUM_OF_BYTES: usize = 4;

/// Vector of private keys in the multi-key Ed25519 structure along with the
/// threshold.
#[derive(
    DeserializeKey, Eq, PartialEq, SilentDisplay, SilentDebug, SerializeKey,
)]
pub struct MultiEd25519PrivateKey {
    private_keys: Vec<Ed25519PrivateKey>,
    threshold: u8,
}

#[cfg(feature = "assert-private-keys-not-cloneable")]
static_assertions::assert_not_impl_any!(MultiEd25519PrivateKey: Clone);

/// Vector of public keys in the multi-key Ed25519 structure along with the
/// threshold.
#[derive(Clone, DeserializeKey, Eq, PartialEq, SerializeKey)]
pub struct MultiEd25519PublicKey {
    public_keys: Vec<Ed25519PublicKey>,
    threshold: u8,
}

#[cfg(mirai)]
use crate::tags::ValidatedPublicKeyTag;
#[cfg(not(mirai))]
struct ValidatedPublicKeyTag {}

/// Vector of the multi-key signatures along with a 32bit [u8; 4] bitmap
/// required to map signatures with their corresponding public keys.
///
/// Note that bits are read from left to right. For instance, in the following
/// bitmap [0b0001_0000, 0b0000_0000, 0b0000_0000, 0b0000_0001], the 3rd and
/// 31st positions are set.
#[derive(Clone, DeserializeKey, Eq, PartialEq, SerializeKey)]
pub struct MultiEd25519Signature {
    signatures: Vec<Ed25519Signature>,
    bitmap: [u8; BITMAP_NUM_OF_BYTES],
}

impl MultiEd25519PrivateKey {
    /// Construct a new MultiEd25519PrivateKey.
    pub fn new(
        private_keys: Vec<Ed25519PrivateKey>, threshold: u8,
    ) -> std::result::Result<Self, CryptoMaterialError> {
        let num_of_keys = private_keys.len();
        if threshold == 0 || num_of_keys < threshold as usize {
            Err(CryptoMaterialError::ValidationError)
        } else if num_of_keys > MAX_NUM_OF_KEYS {
            Err(CryptoMaterialError::WrongLengthError)
        } else {
            Ok(MultiEd25519PrivateKey {
                private_keys,
                threshold,
            })
        }
    }

    /// Serialize a MultiEd25519PrivateKey.
    pub fn to_bytes(&self) -> Vec<u8> {
        to_bytes(&self.private_keys, self.threshold)
    }
}

impl MultiEd25519PublicKey {
    /// Construct a new MultiEd25519PublicKey.
    /// --- Rules ---
    /// a) threshold cannot be zero.
    /// b) public_keys.len() should be equal to or larger than threshold.
    /// c) support up to MAX_NUM_OF_KEYS public keys.
    pub fn new(
        public_keys: Vec<Ed25519PublicKey>, threshold: u8,
    ) -> std::result::Result<Self, CryptoMaterialError> {
        let num_of_keys = public_keys.len();
        if threshold == 0 || num_of_keys < threshold as usize {
            Err(CryptoMaterialError::ValidationError)
        } else if num_of_keys > MAX_NUM_OF_KEYS {
            Err(CryptoMaterialError::WrongLengthError)
        } else {
            Ok(MultiEd25519PublicKey {
                public_keys,
                threshold,
            })
        }
    }

    /// Getter public_keys
    pub fn public_keys(&self) -> &Vec<Ed25519PublicKey> { &self.public_keys }

    /// Getter threshold
    pub fn threshold(&self) -> &u8 { &self.threshold }

    /// Serialize a MultiEd25519PublicKey.
    pub fn to_bytes(&self) -> Vec<u8> {
        to_bytes(&self.public_keys, self.threshold)
    }
}

///////////////////////
// PrivateKey Traits //
///////////////////////

/// Convenient method to create a MultiEd25519PrivateKey from a single
/// Ed25519PrivateKey.
impl From<&Ed25519PrivateKey> for MultiEd25519PrivateKey {
    fn from(ed_private_key: &Ed25519PrivateKey) -> Self {
        MultiEd25519PrivateKey {
            private_keys: vec![Ed25519PrivateKey::try_from(
                &ed_private_key.to_bytes()[..],
            )
            .unwrap()],
            threshold: 1u8,
        }
    }
}

impl PrivateKey for MultiEd25519PrivateKey {
    type PublicKeyMaterial = MultiEd25519PublicKey;
}

impl SigningKey for MultiEd25519PrivateKey {
    type SignatureMaterial = MultiEd25519Signature;
    type VerifyingKeyMaterial = MultiEd25519PublicKey;

    fn sign<T: CryptoHash + Serialize>(
        &self, message: &T,
    ) -> MultiEd25519Signature {
        let mut bitmap = [0u8; BITMAP_NUM_OF_BYTES];
        let signatures: Vec<Ed25519Signature> = self
            .private_keys
            .iter()
            .take(self.threshold as usize)
            .enumerate()
            .map(|(i, item)| {
                bitmap_set_bit(&mut bitmap, i);
                item.sign(message)
            })
            .collect();

        MultiEd25519Signature { signatures, bitmap }
    }

    #[cfg(any(test, feature = "fuzzing"))]
    fn sign_arbitrary_message(&self, message: &[u8]) -> MultiEd25519Signature {
        let mut signatures: Vec<Ed25519Signature> =
            Vec::with_capacity(self.threshold as usize);
        let mut bitmap = [0u8; BITMAP_NUM_OF_BYTES];
        signatures.extend(
            self.private_keys
                .iter()
                .take(self.threshold as usize)
                .enumerate()
                .map(|(i, item)| {
                    bitmap_set_bit(&mut bitmap, i);
                    item.sign_arbitrary_message(message)
                }),
        );
        MultiEd25519Signature { signatures, bitmap }
    }
}

// Generating a random K out-of N key for testing.
impl Uniform for MultiEd25519PrivateKey {
    fn generate<R>(rng: &mut R) -> Self
    where R: ::rand::RngCore + ::rand::CryptoRng {
        let num_of_keys = rng.gen_range(1..=MAX_NUM_OF_KEYS);
        let mut private_keys: Vec<Ed25519PrivateKey> =
            Vec::with_capacity(num_of_keys);
        for _ in 0..num_of_keys {
            private_keys.push(
                Ed25519PrivateKey::try_from(
                    &ed25519_dalek::SecretKey::generate(rng).to_bytes()[..],
                )
                .unwrap(),
            );
        }
        let threshold = rng.gen_range(1..=num_of_keys) as u8;
        MultiEd25519PrivateKey {
            private_keys,
            threshold,
        }
    }
}

impl TryFrom<&[u8]> for MultiEd25519PrivateKey {
    type Error = CryptoMaterialError;

    /// Deserialize an Ed25519PrivateKey. This method will also check for key
    /// and threshold validity.
    fn try_from(
        bytes: &[u8],
    ) -> std::result::Result<MultiEd25519PrivateKey, CryptoMaterialError> {
        if bytes.is_empty() {
            return Err(CryptoMaterialError::WrongLengthError);
        }
        let threshold =
            check_and_get_threshold(bytes, ED25519_PRIVATE_KEY_LENGTH)?;

        let private_keys: Result<Vec<Ed25519PrivateKey>, _> = bytes
            .chunks_exact(ED25519_PRIVATE_KEY_LENGTH)
            .map(Ed25519PrivateKey::try_from)
            .collect();

        private_keys.map(|private_keys| MultiEd25519PrivateKey {
            private_keys,
            threshold,
        })
    }
}

impl Length for MultiEd25519PrivateKey {
    fn length(&self) -> usize {
        self.private_keys.len() * ED25519_PRIVATE_KEY_LENGTH + 1
    }
}

impl ValidCryptoMaterial for MultiEd25519PrivateKey {
    fn to_bytes(&self) -> Vec<u8> { self.to_bytes() }
}

impl Genesis for MultiEd25519PrivateKey {
    fn genesis() -> Self {
        let mut buf = [0u8; ED25519_PRIVATE_KEY_LENGTH];
        buf[ED25519_PRIVATE_KEY_LENGTH - 1] = 1u8;
        MultiEd25519PrivateKey {
            private_keys: vec![
                Ed25519PrivateKey::try_from(buf.as_ref()).unwrap()
            ],
            threshold: 1u8,
        }
    }
}

//////////////////////
// PublicKey Traits //
//////////////////////

/// Convenient method to create a MultiEd25519PublicKey from a single
/// Ed25519PublicKey.
impl From<Ed25519PublicKey> for MultiEd25519PublicKey {
    fn from(ed_public_key: Ed25519PublicKey) -> Self {
        MultiEd25519PublicKey {
            public_keys: vec![ed_public_key],
            threshold: 1u8,
        }
    }
}

/// Implementing From<&PrivateKey<...>> allows to derive a public key in a more
/// elegant fashion.
impl From<&MultiEd25519PrivateKey> for MultiEd25519PublicKey {
    fn from(private_key: &MultiEd25519PrivateKey) -> Self {
        let public_keys = private_key
            .private_keys
            .iter()
            .map(PrivateKey::public_key)
            .collect();
        MultiEd25519PublicKey {
            public_keys,
            threshold: private_key.threshold,
        }
    }
}

/// We deduce PublicKey from this.
impl PublicKey for MultiEd25519PublicKey {
    type PrivateKeyMaterial = MultiEd25519PrivateKey;
}

#[allow(clippy::derive_hash_xor_eq)]
impl std::hash::Hash for MultiEd25519PublicKey {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        let encoded_pubkey = self.to_bytes();
        state.write(&encoded_pubkey);
    }
}

impl TryFrom<&[u8]> for MultiEd25519PublicKey {
    type Error = CryptoMaterialError;

    /// Deserialize a MultiEd25519PublicKey. This method will also check for key
    /// and threshold validity, and will only deserialize keys that are safe
    /// against small subgroup attacks.
    fn try_from(
        bytes: &[u8],
    ) -> std::result::Result<MultiEd25519PublicKey, CryptoMaterialError> {
        if bytes.is_empty() {
            return Err(CryptoMaterialError::WrongLengthError);
        }
        let threshold =
            check_and_get_threshold(bytes, ED25519_PUBLIC_KEY_LENGTH)?;
        let public_keys: Result<Vec<Ed25519PublicKey>, _> = bytes
            .chunks_exact(ED25519_PUBLIC_KEY_LENGTH)
            .map(Ed25519PublicKey::try_from)
            .collect();
        public_keys.map(|public_keys| {
            let public_key = MultiEd25519PublicKey {
                public_keys,
                threshold,
            };
            add_tag!(&public_key, ValidatedPublicKeyTag);
            public_key
        })
    }
}

/// We deduce VerifyingKey from pointing to the signature material
/// we get the ability to do `pubkey.validate(msg, signature)`
impl VerifyingKey for MultiEd25519PublicKey {
    type SignatureMaterial = MultiEd25519Signature;
    type SigningKeyMaterial = MultiEd25519PrivateKey;
}

impl fmt::Display for MultiEd25519PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", hex::encode(&self.to_bytes()))
    }
}

impl fmt::Debug for MultiEd25519PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "MultiEd25519PublicKey({})", self)
    }
}

impl Length for MultiEd25519PublicKey {
    fn length(&self) -> usize {
        self.public_keys.len() * ED25519_PUBLIC_KEY_LENGTH + 1
    }
}

impl ValidCryptoMaterial for MultiEd25519PublicKey {
    fn to_bytes(&self) -> Vec<u8> { self.to_bytes() }
}

impl MultiEd25519Signature {
    /// This method will also sort signatures based on index.
    pub fn new(
        signatures: Vec<(Ed25519Signature, u8)>,
    ) -> std::result::Result<Self, CryptoMaterialError> {
        let num_of_sigs = signatures.len();
        if num_of_sigs == 0 || num_of_sigs > MAX_NUM_OF_KEYS {
            return Err(CryptoMaterialError::ValidationError);
        }

        let mut sorted_signatures = signatures;
        sorted_signatures.sort_by(|a, b| a.1.cmp(&b.1));

        let mut bitmap = [0u8; BITMAP_NUM_OF_BYTES];

        // Check if all indexes are unique and < MAX_NUM_OF_KEYS
        let (sigs, indexes): (Vec<_>, Vec<_>) =
            sorted_signatures.iter().cloned().unzip();
        for i in indexes {
            // If an index is out of range.
            if i < MAX_NUM_OF_KEYS as u8 {
                // if an index has been set already (thus, there is a
                // duplicate).
                if bitmap_get_bit(bitmap, i as usize) {
                    return Err(CryptoMaterialError::BitVecError(
                        "Duplicate signature index".to_string(),
                    ));
                } else {
                    bitmap_set_bit(&mut bitmap, i as usize);
                }
            } else {
                return Err(CryptoMaterialError::BitVecError(
                    "Signature index is out of range".to_string(),
                ));
            }
        }
        Ok(MultiEd25519Signature {
            signatures: sigs,
            bitmap,
        })
    }

    /// Getter signatures.
    pub fn signatures(&self) -> &Vec<Ed25519Signature> { &self.signatures }

    /// Getter bitmap.
    pub fn bitmap(&self) -> &[u8; BITMAP_NUM_OF_BYTES] { &self.bitmap }

    /// Serialize a MultiEd25519Signature in the form of
    /// sig0||sig1||..sigN||bitmap.
    pub fn to_bytes(&self) -> Vec<u8> {
        let mut bytes: Vec<u8> = self
            .signatures
            .iter()
            .flat_map(|sig| sig.to_bytes().to_vec())
            .collect();
        bytes.extend(&self.bitmap[..]);
        bytes
    }
}

//////////////////////
// Signature Traits //
//////////////////////

impl TryFrom<&[u8]> for MultiEd25519Signature {
    type Error = CryptoMaterialError;

    /// Deserialize a MultiEd25519Signature. This method will also check for
    /// malleable signatures and bitmap validity.
    fn try_from(
        bytes: &[u8],
    ) -> std::result::Result<MultiEd25519Signature, CryptoMaterialError> {
        let length = bytes.len();
        let bitmap_num_of_bytes = length % ED25519_SIGNATURE_LENGTH;
        let num_of_sigs = length / ED25519_SIGNATURE_LENGTH;

        if num_of_sigs == 0
            || num_of_sigs > MAX_NUM_OF_KEYS
            || bitmap_num_of_bytes != BITMAP_NUM_OF_BYTES
        {
            return Err(CryptoMaterialError::WrongLengthError);
        }

        let bitmap = match bytes[length - BITMAP_NUM_OF_BYTES..].try_into() {
            Ok(bitmap) => bitmap,
            Err(_) => return Err(CryptoMaterialError::DeserializationError),
        };
        if bitmap_count_ones(bitmap) != num_of_sigs as u32 {
            return Err(CryptoMaterialError::DeserializationError);
        }

        let signatures: Result<Vec<Ed25519Signature>, _> = bytes
            .chunks_exact(ED25519_SIGNATURE_LENGTH)
            .map(Ed25519Signature::try_from)
            .collect();
        signatures
            .map(|signatures| MultiEd25519Signature { signatures, bitmap })
    }
}

impl Length for MultiEd25519Signature {
    fn length(&self) -> usize {
        self.signatures.len() * ED25519_SIGNATURE_LENGTH + BITMAP_NUM_OF_BYTES
    }
}

#[allow(clippy::derive_hash_xor_eq)]
impl std::hash::Hash for MultiEd25519Signature {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        let encoded_signature = self.to_bytes();
        state.write(&encoded_signature);
    }
}

impl fmt::Display for MultiEd25519Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", hex::encode(&self.to_bytes()[..]))
    }
}

impl fmt::Debug for MultiEd25519Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "MultiEd25519Signature({})", self)
    }
}

impl ValidCryptoMaterial for MultiEd25519Signature {
    fn to_bytes(&self) -> Vec<u8> { self.to_bytes() }
}

impl Signature for MultiEd25519Signature {
    type SigningKeyMaterial = MultiEd25519PrivateKey;
    type VerifyingKeyMaterial = MultiEd25519PublicKey;

    fn verify<T: CryptoHash + Serialize>(
        &self, message: &T, public_key: &MultiEd25519PublicKey,
    ) -> Result<()> {
        // Public keys should be validated to be safe against small subgroup
        // attacks, etc.
        precondition!(has_tag!(public_key, ValidatedPublicKeyTag));
        let mut bytes = <T as CryptoHash>::Hasher::seed().to_vec();
        bcs::serialize_into(&mut bytes, &message)
            .map_err(|_| CryptoMaterialError::SerializationError)?;
        Self::verify_arbitrary_msg(self, &bytes, public_key)
    }

    /// Checks that `self` is valid for an arbitrary &[u8] `message` using
    /// `public_key`. Outside of this crate, this particular function should
    /// only be used for native signature verification in Move.
    fn verify_arbitrary_msg(
        &self, message: &[u8], public_key: &MultiEd25519PublicKey,
    ) -> Result<()> {
        // Public keys should be validated to be safe against small subgroup
        // attacks, etc.
        precondition!(has_tag!(public_key, ValidatedPublicKeyTag));
        match bitmap_last_set_bit(self.bitmap) {
            Some(last_bit) if last_bit as usize <= public_key.length() => (),
            _ => {
                return Err(anyhow!(
                    "{}",
                    CryptoMaterialError::BitVecError(
                        "Signature index is out of range".to_string()
                    )
                ))
            }
        };
        if bitmap_count_ones(self.bitmap) < public_key.threshold as u32 {
            return Err(anyhow!(
                "{}",
                CryptoMaterialError::BitVecError(
                    "Not enough signatures to meet the threshold".to_string()
                )
            ));
        }
        let mut bitmap_index = 0;
        // TODO use deterministic batch verification when gets available.
        for sig in &self.signatures {
            while !bitmap_get_bit(self.bitmap, bitmap_index) {
                bitmap_index += 1;
            }
            sig.verify_arbitrary_msg(
                message,
                &public_key.public_keys[bitmap_index as usize],
            )?;
            bitmap_index += 1;
        }
        Ok(())
    }
}

impl From<Ed25519Signature> for MultiEd25519Signature {
    fn from(ed_signature: Ed25519Signature) -> Self {
        MultiEd25519Signature {
            signatures: vec![ed_signature],
            // "1000_0000 0000_0000 0000_0000 0000_0000"
            bitmap: [0b1000_0000u8, 0u8, 0u8, 0u8],
        }
    }
}

//////////////////////
// Helper functions //
//////////////////////

// Helper function required to MultiEd25519 keys to_bytes to add the threshold.
fn to_bytes<T: ValidCryptoMaterial>(keys: &[T], threshold: u8) -> Vec<u8> {
    let mut bytes: Vec<u8> = keys
        .iter()
        .flat_map(ValidCryptoMaterial::to_bytes)
        .collect();
    bytes.push(threshold);
    bytes
}

// Helper method to get threshold from a serialized MultiEd25519 key payload.
fn check_and_get_threshold(
    bytes: &[u8], key_size: usize,
) -> std::result::Result<u8, CryptoMaterialError> {
    let payload_length = bytes.len();
    if bytes.is_empty() {
        return Err(CryptoMaterialError::WrongLengthError);
    }
    let threshold_num_of_bytes = payload_length % key_size;
    let num_of_keys = payload_length / key_size;
    let threshold_byte = bytes[bytes.len() - 1];

    if num_of_keys == 0
        || num_of_keys > MAX_NUM_OF_KEYS
        || threshold_num_of_bytes != 1
    {
        Err(CryptoMaterialError::WrongLengthError)
    } else if threshold_byte == 0 || threshold_byte > num_of_keys as u8 {
        Err(CryptoMaterialError::ValidationError)
    } else {
        Ok(threshold_byte)
    }
}

fn bitmap_set_bit(input: &mut [u8; BITMAP_NUM_OF_BYTES], index: usize) {
    let bucket = index / 8;
    // It's always invoked with index < 32, thus there is no need to check
    // range.
    let bucket_pos = index - (bucket * 8);
    input[bucket] |= 128 >> bucket_pos as u8;
}

// Helper method to get the input's bit at index.
fn bitmap_get_bit(input: [u8; BITMAP_NUM_OF_BYTES], index: usize) -> bool {
    let bucket = index / 8;
    // It's always invoked with index < 32, thus there is no need to check
    // range.
    let bucket_pos = index - (bucket * 8);
    (input[bucket] & (128 >> bucket_pos as u8)) != 0
}

// Returns the number of set bits.
fn bitmap_count_ones(input: [u8; BITMAP_NUM_OF_BYTES]) -> u32 {
    input.iter().map(|a| a.count_ones()).sum()
}

// Find the last set bit.
fn bitmap_last_set_bit(input: [u8; BITMAP_NUM_OF_BYTES]) -> Option<u8> {
    input
        .iter()
        .rev()
        .enumerate()
        .find(|(_, byte)| byte != &&0u8)
        .map(|(i, byte)| {
            (8 * (BITMAP_NUM_OF_BYTES - i) - byte.trailing_zeros() as usize - 1)
                as u8
        })
}

#[test]
fn bitmap_tests() {
    let mut bitmap = [0b0100_0000u8, 0b1111_1111u8, 0u8, 0b1000_0000u8];
    assert!(!bitmap_get_bit(bitmap, 0));
    assert!(bitmap_get_bit(bitmap, 1));
    for i in 8..16 {
        assert!(bitmap_get_bit(bitmap, i));
    }
    for i in 16..24 {
        assert!(!bitmap_get_bit(bitmap, i));
    }
    assert!(bitmap_get_bit(bitmap, 24));
    assert!(!bitmap_get_bit(bitmap, 31));
    assert_eq!(bitmap_last_set_bit(bitmap), Some(24));

    bitmap_set_bit(&mut bitmap, 30);
    assert!(bitmap_get_bit(bitmap, 30));
    assert_eq!(bitmap_last_set_bit(bitmap), Some(30));
}