1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/

use crate::{
    bls::{
        BLSPrivateKey, BLSPublicKey, BLSSignature, BLS_PRIVATE_KEY_LENGTH,
        BLS_PUBLIC_KEY_LENGTH,
    },
    hash::{CryptoHash, CryptoHasher},
    traits::*,
    CryptoMaterialError, PrivateKey, PublicKey, Signature, SigningKey, Uniform,
    ValidCryptoMaterial, ValidCryptoMaterialStringExt, VerifyingKey,
};
use anyhow::{anyhow, Result};
pub use bls_signatures::{
    aggregate, hash as bls_hash, PrivateKey as RawPrivateKey,
    PublicKey as RawPublicKey, Serialize as BLSSerialize,
    Signature as RawSignature,
};
use core::convert::TryFrom;
use diem_crypto_derive::{
    DeserializeKey, SerializeKey, SilentDebug, SilentDisplay,
};
use mirai_annotations::*;
use rand::Rng;
use serde::Serialize;
use std::fmt;

const MAX_NUM_OF_KEYS: usize = 300;
const BITMAP_NUM_OF_BYTES: usize = 40;

/// Vector of private keys in the multi-key BLS structure.
#[derive(
    DeserializeKey, Eq, PartialEq, SilentDisplay, SilentDebug, SerializeKey,
)]
pub struct MultiBLSPrivateKey {
    private_keys: Vec<BLSPrivateKey>,
}

#[cfg(feature = "assert-private-keys-not-cloneable")]
static_assertions::assert_not_impl_any!(MultiBLSPrivateKey: Clone);

/// Vector of public keys in the multi-key BLS structure.
#[derive(Clone, DeserializeKey, Eq, PartialEq, SerializeKey)]
pub struct MultiBLSPublicKey {
    public_keys: Vec<BLSPublicKey>,
}

#[cfg(mirai)]
use crate::tags::ValidatedPublicKeyTag;
#[cfg(not(mirai))]
struct ValidatedPublicKeyTag {}

/// Multi BLS signature wrapper
#[derive(DeserializeKey, Clone, SerializeKey, PartialEq)]
pub struct MultiBLSSignature {
    bitmap: [u8; BITMAP_NUM_OF_BYTES],
    signature: RawSignature,
}

impl MultiBLSPrivateKey {
    /// Construct a new MultiBLSPrivateKey.
    pub fn new(
        private_keys: Vec<BLSPrivateKey>,
    ) -> std::result::Result<Self, CryptoMaterialError> {
        Ok(MultiBLSPrivateKey { private_keys })
    }

    /// Serialize a MultiBLSPrivateKey.
    pub fn to_bytes(&self) -> Vec<u8> { to_bytes(&self.private_keys) }
}

impl MultiBLSPublicKey {
    /// Construct a new MultiBLSPublicKey.
    pub fn new(public_keys: Vec<BLSPublicKey>) -> Self {
        MultiBLSPublicKey { public_keys }
    }

    /// Getter public_keys
    pub fn public_keys(&self) -> &Vec<BLSPublicKey> { &self.public_keys }

    /// Serialize a MultiBLSPublicKey.
    pub fn to_bytes(&self) -> Vec<u8> { to_bytes(&self.public_keys) }
}

///////////////////////
// PrivateKey Traits //
///////////////////////

/// Convenient method to create a MultiBLSPrivateKey from a single
/// BLSPrivateKey.
impl From<&BLSPrivateKey> for MultiBLSPrivateKey {
    fn from(bls_private_key: &BLSPrivateKey) -> Self {
        MultiBLSPrivateKey {
            private_keys: vec![BLSPrivateKey::try_from(
                &bls_private_key.to_bytes()[..],
            )
            .unwrap()],
        }
    }
}

impl PrivateKey for MultiBLSPrivateKey {
    type PublicKeyMaterial = MultiBLSPublicKey;
}

impl SigningKey for MultiBLSPrivateKey {
    type SignatureMaterial = MultiBLSSignature;
    type VerifyingKeyMaterial = MultiBLSPublicKey;

    fn sign<T: CryptoHash + Serialize>(
        &self, message: &T,
    ) -> MultiBLSSignature {
        let signatures: Vec<RawSignature> = self
            .private_keys
            .iter()
            .enumerate()
            .map(|(_, item)| item.sign(message).raw())
            .collect();

        MultiBLSSignature {
            bitmap: [255; BITMAP_NUM_OF_BYTES],
            signature: aggregate(&signatures).unwrap(),
        }
    }

    #[cfg(any(test, feature = "fuzzing"))]
    fn sign_arbitrary_message(&self, message: &[u8]) -> MultiBLSSignature {
        let signatures: Vec<RawSignature> = self
            .private_keys
            .iter()
            .enumerate()
            .map(|(_, item)| item.sign_arbitrary_message(message).raw())
            .collect();

        MultiBLSSignature {
            bitmap: [255; BITMAP_NUM_OF_BYTES],
            signature: aggregate(&signatures).unwrap(),
        }
    }
}

// Generating a random K out-of N key for testing.
impl Uniform for MultiBLSPrivateKey {
    fn generate<R>(rng: &mut R) -> Self
    where R: ::rand::RngCore + ::rand::CryptoRng {
        let num_of_keys = rng.gen_range(1..=MAX_NUM_OF_KEYS);
        let mut private_keys: Vec<BLSPrivateKey> =
            Vec::with_capacity(num_of_keys);
        for _ in 0..num_of_keys {
            private_keys
                .push(BLSPrivateKey::from(RawPrivateKey::generate(rng)));
        }
        MultiBLSPrivateKey { private_keys }
    }
}

impl TryFrom<&[u8]> for MultiBLSPrivateKey {
    type Error = CryptoMaterialError;

    /// Deserialize an BLSPrivateKey. This method will also check for key
    /// and threshold validity.
    fn try_from(
        bytes: &[u8],
    ) -> std::result::Result<MultiBLSPrivateKey, CryptoMaterialError> {
        if bytes.is_empty() {
            return Err(CryptoMaterialError::WrongLengthError);
        }

        let private_keys: Result<Vec<BLSPrivateKey>, _> = bytes
            .chunks_exact(BLS_PRIVATE_KEY_LENGTH)
            .map(BLSPrivateKey::try_from)
            .collect();

        private_keys.map(|private_keys| MultiBLSPrivateKey { private_keys })
    }
}

impl Length for MultiBLSPrivateKey {
    fn length(&self) -> usize {
        self.private_keys.len() * BLS_PRIVATE_KEY_LENGTH
    }
}

impl ValidCryptoMaterial for MultiBLSPrivateKey {
    fn to_bytes(&self) -> Vec<u8> { self.to_bytes() }
}

impl Genesis for MultiBLSPrivateKey {
    fn genesis() -> Self {
        let mut buf = [0u8; BLS_PRIVATE_KEY_LENGTH];
        buf[BLS_PRIVATE_KEY_LENGTH - 1] = 1u8;
        MultiBLSPrivateKey {
            private_keys: vec![BLSPrivateKey::try_from(buf.as_ref()).unwrap()],
        }
    }
}

//////////////////////
// PublicKey Traits //
//////////////////////

/// Convenient method to create a MultiBLSPublicKey from a single
/// BLSPublicKey.
impl From<BLSPublicKey> for MultiBLSPublicKey {
    fn from(ed_public_key: BLSPublicKey) -> Self {
        MultiBLSPublicKey {
            public_keys: vec![ed_public_key],
        }
    }
}

/// Implementing From<&PrivateKey<...>> allows to derive a public key in a more
/// elegant fashion.
impl From<&MultiBLSPrivateKey> for MultiBLSPublicKey {
    fn from(private_key: &MultiBLSPrivateKey) -> Self {
        let public_keys = private_key
            .private_keys
            .iter()
            .map(PrivateKey::public_key)
            .collect();
        MultiBLSPublicKey { public_keys }
    }
}

/// We deduce PublicKey from this.
impl PublicKey for MultiBLSPublicKey {
    type PrivateKeyMaterial = MultiBLSPrivateKey;
}

#[allow(clippy::derive_hash_xor_eq)]
impl std::hash::Hash for MultiBLSPublicKey {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        let encoded_pubkey = self.to_bytes();
        state.write(&encoded_pubkey);
    }
}

impl TryFrom<&[u8]> for MultiBLSPublicKey {
    type Error = CryptoMaterialError;

    /// Deserialize a MultiBLSPublicKey. This method will also check for key
    /// and threshold validity, and will only deserialize keys that are safe
    /// against small subgroup attacks.
    fn try_from(
        bytes: &[u8],
    ) -> std::result::Result<MultiBLSPublicKey, CryptoMaterialError> {
        if bytes.is_empty() {
            return Err(CryptoMaterialError::WrongLengthError);
        }
        let public_keys: Result<Vec<BLSPublicKey>, _> = bytes
            .chunks_exact(BLS_PUBLIC_KEY_LENGTH)
            .map(BLSPublicKey::try_from)
            .collect();
        public_keys.map(|public_keys| {
            let public_key = MultiBLSPublicKey { public_keys };
            add_tag!(&public_key, ValidatedPublicKeyTag);
            public_key
        })
    }
}

/// We deduce VerifyingKey from pointing to the signature material
/// we get the ability to do `pubkey.validate(msg, signature)`
impl VerifyingKey for MultiBLSPublicKey {
    type SignatureMaterial = MultiBLSSignature;
    type SigningKeyMaterial = MultiBLSPrivateKey;
}

impl fmt::Display for MultiBLSPublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", hex::encode(&self.to_bytes()))
    }
}

impl fmt::Debug for MultiBLSPublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "MultiBLSPublicKey({})", self)
    }
}

impl Length for MultiBLSPublicKey {
    fn length(&self) -> usize { self.public_keys.len() * BLS_PUBLIC_KEY_LENGTH }
}

impl ValidCryptoMaterial for MultiBLSPublicKey {
    fn to_bytes(&self) -> Vec<u8> { self.to_bytes() }
}

impl MultiBLSSignature {
    /// This method will also sort signatures based on index.
    pub fn new(
        signatures: Vec<(BLSSignature, usize)>,
    ) -> std::result::Result<Self, CryptoMaterialError> {
        let num_of_sigs = signatures.len();
        if num_of_sigs == 0 || num_of_sigs > MAX_NUM_OF_KEYS {
            return Err(CryptoMaterialError::ValidationError);
        }
        let mut bitmap = [0u8; BITMAP_NUM_OF_BYTES];
        let (sigs, indexes): (Vec<_>, Vec<_>) =
            signatures.iter().cloned().unzip();
        for i in indexes {
            if i >= MAX_NUM_OF_KEYS {
                return Err(CryptoMaterialError::ValidationError);
            }
            if bitmap_get_bit(bitmap, i) {
                return Err(CryptoMaterialError::BitVecError(
                    "Duplicate signature index".to_string(),
                ));
            } else {
                bitmap_set_bit(&mut bitmap, i as usize);
            }
        }

        let raw_signatures: Vec<RawSignature> =
            sigs.into_iter().map(|sig| sig.raw()).collect();
        let signature = match aggregate(&raw_signatures) {
            Ok(signature) => Ok(signature),
            Err(_) => Err(CryptoMaterialError::AggregateError),
        }?;
        Ok(Self { bitmap, signature })
    }

    /// Getter raw signature.
    pub fn raw(&self) -> &RawSignature { &self.signature }

    /// to bytes
    pub fn to_bytes(&self) -> Vec<u8> {
        let mut bytes: Vec<u8> = vec![];
        bytes.extend(&self.bitmap[..]);
        bytes.extend(&self.signature.as_bytes()[..]);
        bytes
    }
}

//////////////////////
// Signature Traits //
//////////////////////

impl Eq for MultiBLSSignature {}

impl TryFrom<&[u8]> for MultiBLSSignature {
    type Error = CryptoMaterialError;

    /// Deserialize a MultiBLSSignature. This method will also check for
    /// malleable signatures and bitmap validity.
    fn try_from(
        bytes: &[u8],
    ) -> std::result::Result<MultiBLSSignature, CryptoMaterialError> {
        if bytes.len() < BITMAP_NUM_OF_BYTES {
            return Err(CryptoMaterialError::DeserializationError);
        }
        let mut bitmap = [0u8; BITMAP_NUM_OF_BYTES];
        for i in 0..BITMAP_NUM_OF_BYTES {
            bitmap[i] = bytes[i];
        }
        let signature =
            match RawSignature::from_bytes(&bytes[BITMAP_NUM_OF_BYTES..]) {
                Ok(signature) => signature,
                Err(_) => {
                    return Err(CryptoMaterialError::DeserializationError)
                }
            };
        Ok(Self { bitmap, signature })
    }
}

#[allow(clippy::derive_hash_xor_eq)]
impl std::hash::Hash for MultiBLSSignature {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        let encoded_signature = self.to_bytes();
        state.write(&encoded_signature);
    }
}

impl fmt::Display for MultiBLSSignature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", hex::encode(&self.to_bytes()[..]))
    }
}

impl fmt::Debug for MultiBLSSignature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "MultiBLSSignature({})", self)
    }
}

impl ValidCryptoMaterial for MultiBLSSignature {
    fn to_bytes(&self) -> Vec<u8> { self.to_bytes() }
}

impl Signature for MultiBLSSignature {
    type SigningKeyMaterial = MultiBLSPrivateKey;
    type VerifyingKeyMaterial = MultiBLSPublicKey;

    fn verify<T: CryptoHash + Serialize>(
        &self, message: &T, public_key: &MultiBLSPublicKey,
    ) -> Result<()> {
        // Public keys should be validated to be safe against small subgroup
        // attacks, etc.
        precondition!(has_tag!(public_key, ValidatedPublicKeyTag));
        let mut bytes = <T as CryptoHash>::Hasher::seed().to_vec();
        bcs::serialize_into(&mut bytes, &message)
            .map_err(|_| CryptoMaterialError::SerializationError)?;
        Self::verify_arbitrary_msg(self, &bytes, public_key)
    }

    /// Checks that `self` is valid for an arbitrary &[u8] `message` using
    /// `public_key`. Outside of this crate, this particular function should
    /// only be used for native signature verification in Move.
    fn verify_arbitrary_msg(
        &self, message: &[u8], public_key: &MultiBLSPublicKey,
    ) -> Result<()> {
        precondition!(has_tag!(public_key, ValidatedPublicKeyTag));
        match bitmap_last_set_bit(self.bitmap) {
            Some(last_bit)
                if last_bit as usize <= public_key.public_keys().len() =>
            {
                ()
            }
            _ => {
                return Err(anyhow!(
                    "{}",
                    CryptoMaterialError::BitVecError(
                        "Signature index is out of range".to_string()
                    )
                ))
            }
        };

        let mut raw_public_keys: Vec<RawPublicKey> = vec![];
        for i in 0..public_key.public_keys().len() {
            if bitmap_get_bit(self.bitmap, i) {
                raw_public_keys.push(public_key.public_keys()[i].clone().raw())
            }
        }
        match bls_signatures::verify_same_message(
            &self.signature,
            message,
            &raw_public_keys,
        ) {
            true => Ok(()),
            false => Err(anyhow!("Invalid BLS signature!")),
        }
    }
}

impl From<BLSSignature> for MultiBLSSignature {
    fn from(bls_signature: BLSSignature) -> Self {
        let mut bitmap = [0u8; BITMAP_NUM_OF_BYTES];
        bitmap[0] = 1;
        MultiBLSSignature {
            bitmap,
            signature: bls_signature.raw(),
        }
    }
}

//////////////////////
// Helper functions //
//////////////////////

// Helper function required to MultiBLS keys to_bytes to add the threshold.
fn to_bytes<T: ValidCryptoMaterial>(keys: &[T]) -> Vec<u8> {
    let bytes: Vec<u8> = keys
        .iter()
        .flat_map(ValidCryptoMaterial::to_bytes)
        .collect();
    bytes
}

fn bitmap_set_bit(input: &mut [u8; BITMAP_NUM_OF_BYTES], index: usize) {
    let bucket = index / 8;
    // It's always invoked with index < 32, thus there is no need to check
    // range.
    let bucket_pos = index - (bucket * 8);
    input[bucket] |= 128 >> bucket_pos as u8;
}

// Helper method to get the input's bit at index.
fn bitmap_get_bit(input: [u8; BITMAP_NUM_OF_BYTES], index: usize) -> bool {
    let bucket = index / 8;
    // It's always invoked with index < 32, thus there is no need to check
    // range.
    let bucket_pos = index - (bucket * 8);
    (input[bucket] & (128 >> bucket_pos as u8)) != 0
}

// Find the last set bit.
fn bitmap_last_set_bit(input: [u8; BITMAP_NUM_OF_BYTES]) -> Option<u8> {
    input
        .iter()
        .rev()
        .enumerate()
        .find(|(_, byte)| byte != &&0u8)
        .map(|(i, byte)| {
            (8 * (BITMAP_NUM_OF_BYTES - i) - byte.trailing_zeros() as usize - 1)
                as u8
        })
}

#[test]
fn bitmap_tests() {
    let mut bitmap = [0u8; BITMAP_NUM_OF_BYTES];
    bitmap[0] = 0b0100_0000u8;
    bitmap[1] = 0b1111_1111u8;
    bitmap[3] = 0b1000_0000u8;
    assert!(!bitmap_get_bit(bitmap, 0));
    assert!(bitmap_get_bit(bitmap, 1));
    for i in 8..16 {
        assert!(bitmap_get_bit(bitmap, i));
    }
    for i in 16..24 {
        assert!(!bitmap_get_bit(bitmap, i));
    }
    assert!(bitmap_get_bit(bitmap, 24));
    assert!(!bitmap_get_bit(bitmap, 31));
    assert_eq!(bitmap_last_set_bit(bitmap), Some(24));

    bitmap_set_bit(&mut bitmap, 30);
    assert!(bitmap_get_bit(bitmap, 30));
    assert_eq!(bitmap_last_set_bit(bitmap), Some(30));
}