1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0

// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/

//! This module defines traits and implementations of
//! [cryptographic hash functions](https://en.wikipedia.org/wiki/Cryptographic_hash_function)
//! for the Diem project.
//!
//! It is designed to help authors protect against two types of real world
//! attacks:
//!
//! 1. **Semantic Ambiguity**: imagine that Alice has a private key and is using
//!    two different applications, X and Y. X asks Alice to sign a message
//! saying    "I am Alice". Alice accepts to sign this message in the context of
//! X. However,    unbeknownst to Alice, in application Y, messages beginning
//! with the letter "I"    represent transfers. " am " represents a transfer of
//! 500 coins and "Alice"    can be interpreted as a destination address. When
//! Alice signed the message she    needed to be aware of how other applications
//! might interpret that message.
//!
//! 2. **Format Ambiguity**: imagine a program that hashes a pair of strings. To
//!    hash the strings `a` and `b` it hashes `a + "||" + b`. The pair of
//!    strings `a="foo||", b = "bar"` and `a="foo", b = "||bar"` result in the
//!    same input to the hash function and therefore the same hash. This creates
//!    a collision.
//!
//! Regarding (1), this library makes it easy for Diem developers to create as
//! many new "hashable" Rust types as needed so that each Rust type hashed and
//! signed in Diem has a unique meaning, that is, unambiguously captures the
//! intent of a signer.
//!
//! Regarding (2), this library provides the `CryptoHasher` abstraction to
//! easily manage cryptographic seeds for hashing. Hashing seeds aim to ensure
//! that the hashes of values of a given type `MyNewStruct` never collide with
//! hashes of values from another type.
//!
//! Finally, to prevent format ambiguity within a same type `MyNewStruct` and
//! facilitate protocol specifications, we use [Binary Canonical Serialization (BCS)](https://docs.rs/bcs/)
//! as the recommended solution to write Rust values into a hasher.
//!
//! # Quick Start
//!
//! To obtain a `hash()` method for any new type `MyNewStruct`, it is (strongly)
//! recommended to use the derive macros of `serde` and `diem_crypto_derive` as
//! follows:
//!
//! ```
//! use diem_crypto::hash::CryptoHash;
//! use diem_crypto_derive::{BCSCryptoHash, CryptoHasher};
//! use serde::{Deserialize, Serialize};
//! #[derive(Serialize, Deserialize, CryptoHasher, BCSCryptoHash)]
//! struct MyNewStruct {/* ... */}
//!
//! let value = MyNewStruct { /*...*/ };
//! value.hash();
//! ```
//!
//! Under the hood, this will generate a new implementation `MyNewStructHasher`
//! for the trait `CryptoHasher` and implement the trait `CryptoHash` for
//! `MyNewStruct` using BCS.
//!
//! # Implementing New Hashers
//!
//! The trait `CryptoHasher` captures the notion of a pre-seeded hash function,
//! aka a "hasher". New implementations can be defined in two ways.
//!
//! ## Derive macro (recommended)
//!
//! For any new structure `MyNewStruct` that needs to be hashed, it is
//! recommended to simply use the derive macro [`CryptoHasher`](https://doc.rust-lang.org/reference/procedural-macros.html).
//!
//! ```
//! use diem_crypto_derive::CryptoHasher;
//! use serde::Deserialize;
//! #[derive(Deserialize, CryptoHasher)]
//! #[serde(rename = "OptionalCustomSerdeName")]
//! struct MyNewStruct {/* ... */}
//! ```
//!
//! The macro `CryptoHasher` will define a hasher automatically called
//! `MyNewStructHasher`, and derive a salt using the name of the type as seen by
//! the Serde library. In the example above, this name was changed using the
//! Serde parameter `rename`: the salt will be based on the value
//! `OptionalCustomSerdeName` instead of the default name `MyNewStruct`.
//!
//! ## Customized hashers
//!
//! **IMPORTANT:** Do NOT use this for new code unless you know what you are
//! doing.
//!
//! This library also provides a few customized hashers defined in the code as
//! follows:
//!
//! ```
//! # // To get around that there's no way to doc-test a non-exported macro:
//! # macro_rules! define_hasher { ($e:expr) => () }
//! define_hasher! { (MyNewDataHasher, MY_NEW_DATA_HASHER, MY_NEW_DATA_SEED,
//! b"MyUniqueSaltString") }
//! ```
//!
//! # Using a hasher directly
//!
//! **IMPORTANT:** Do NOT use this for new code unless you know what you are
//! doing.
//! ```
//! use diem_crypto::hash::{CryptoHasher, TestOnlyHasher};
//!
//! let mut hasher = TestOnlyHasher::default();
//! hasher.update("Test message".as_bytes());
//! let hash_value = hasher.finish();
//! ```
#![allow(clippy::integer_arithmetic)]
use bytes::Bytes;
use cfx_types::U256;
use hex::FromHex;
use mirai_annotations::*;
use once_cell::sync::{Lazy, OnceCell};
#[cfg(any(test, feature = "fuzzing"))]
use proptest_derive::Arbitrary;
use rand::{rngs::OsRng, Rng};
use serde::{de, ser};
use std::{
    self,
    convert::{AsRef, TryFrom},
    fmt,
    str::FromStr,
};
use tiny_keccak::{Hasher, Sha3};

/// A prefix used to begin the salt of every diem hashable structure. The salt
/// consists in this global prefix, concatenated with the specified
/// serialization name of the struct.
pub(crate) const DIEM_HASH_PREFIX: &[u8] = b"DIEM::";

/// Output value of our hash function. Intentionally opaque for safety and
/// modularity.
#[derive(Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)]
#[cfg_attr(any(test, feature = "fuzzing"), derive(Arbitrary))]
pub struct HashValue {
    hash: [u8; HashValue::LENGTH],
}

impl HashValue {
    /// The length of the hash in bytes.
    pub const LENGTH: usize = 32;
    /// The length of the hash in bits.
    pub const LENGTH_IN_BITS: usize = Self::LENGTH * 8;

    /// Create a new [`HashValue`] from a byte array.
    pub fn new(hash: [u8; HashValue::LENGTH]) -> Self { HashValue { hash } }

    /// Create from a slice (e.g. retrieved from storage).
    pub fn from_slice<T: AsRef<[u8]>>(
        bytes: T,
    ) -> Result<Self, HashValueParseError> {
        <[u8; Self::LENGTH]>::try_from(bytes.as_ref())
            .map_err(|_| HashValueParseError)
            .map(Self::new)
    }

    /// Dumps into a vector.
    pub fn to_vec(&self) -> Vec<u8> { self.hash.to_vec() }

    /// Creates a zero-initialized instance.
    pub const fn zero() -> Self {
        HashValue {
            hash: [0; HashValue::LENGTH],
        }
    }

    /// Create a cryptographically random instance.
    pub fn random() -> Self {
        let mut rng = OsRng;
        let hash: [u8; HashValue::LENGTH] = rng.gen();
        HashValue { hash }
    }

    /// Creates a random instance with given rng. Useful in unit tests.
    pub fn random_with_rng<R: Rng>(rng: &mut R) -> Self {
        let hash: [u8; HashValue::LENGTH] = rng.gen();
        HashValue { hash }
    }

    /// Convenience function that computes a `HashValue` internally equal to
    /// the sha3_256 of a byte buffer. It will handle hasher creation, data
    /// feeding and finalization.
    ///
    /// Note this will not result in the `<T as CryptoHash>::hash()` for any
    /// reasonable struct T, as this computes a sha3 without any ornaments.
    pub fn sha3_256_of(buffer: &[u8]) -> Self {
        let mut sha3 = Sha3::v256();
        sha3.update(buffer);
        HashValue::from_keccak(sha3)
    }

    #[cfg(test)]
    pub fn from_iter_sha3<'a, I>(buffers: I) -> Self
    where I: IntoIterator<Item = &'a [u8]> {
        let mut sha3 = Sha3::v256();
        for buffer in buffers {
            sha3.update(buffer);
        }
        HashValue::from_keccak(sha3)
    }

    fn as_ref_mut(&mut self) -> &mut [u8] { &mut self.hash[..] }

    fn from_keccak(state: Sha3) -> Self {
        let mut hash = Self::zero();
        state.finalize(hash.as_ref_mut());
        hash
    }

    /// Returns a `HashValueBitIterator` over all the bits that represent this
    /// `HashValue`.
    pub fn iter_bits(&self) -> HashValueBitIterator<'_> {
        HashValueBitIterator::new(self)
    }

    /// Constructs a `HashValue` from an iterator of bits.
    pub fn from_bit_iter(
        iter: impl ExactSizeIterator<Item = bool>,
    ) -> Result<Self, HashValueParseError> {
        if iter.len() != Self::LENGTH_IN_BITS {
            return Err(HashValueParseError);
        }

        let mut buf = [0; Self::LENGTH];
        for (i, bit) in iter.enumerate() {
            if bit {
                buf[i / 8] |= 1 << (7 - i % 8);
            }
        }
        Ok(Self::new(buf))
    }

    /// Returns the length of common prefix of `self` and `other` in bits.
    pub fn common_prefix_bits_len(&self, other: HashValue) -> usize {
        self.iter_bits()
            .zip(other.iter_bits())
            .take_while(|(x, y)| x == y)
            .count()
    }

    /// Full hex representation of a given hash value.
    pub fn to_hex(&self) -> String { format!("{:x}", self) }

    /// Parse a given hex string to a hash value.
    pub fn from_hex<T: AsRef<[u8]>>(
        hex: T,
    ) -> Result<Self, HashValueParseError> {
        <[u8; Self::LENGTH]>::from_hex(hex)
            .map_err(|_| HashValueParseError)
            .map(Self::new)
    }

    /// Convert a hash to big int (U256).
    pub fn to_u256(&self) -> U256 { U256::from_big_endian(self.as_ref()) }
}

impl ser::Serialize for HashValue {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where S: ser::Serializer {
        if serializer.is_human_readable() {
            serializer.serialize_str(&self.to_hex())
        } else {
            // In order to preserve the Serde data model and help analysis
            // tools, make sure to wrap our value in a container
            // with the same name as the original type.
            serializer.serialize_newtype_struct(
                "HashValue",
                serde_bytes::Bytes::new(&self.hash[..]),
            )
        }
    }
}

impl<'de> de::Deserialize<'de> for HashValue {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where D: de::Deserializer<'de> {
        if deserializer.is_human_readable() {
            let encoded_hash = <String>::deserialize(deserializer)?;
            HashValue::from_hex(encoded_hash.as_str())
                .map_err(<D::Error as ::serde::de::Error>::custom)
        } else {
            // See comment in serialize.
            #[derive(::serde::Deserialize)]
            #[serde(rename = "HashValue")]
            struct Value<'a>(&'a [u8]);

            let value = Value::deserialize(deserializer)?;
            Self::from_slice(value.0)
                .map_err(<D::Error as ::serde::de::Error>::custom)
        }
    }
}

impl Default for HashValue {
    fn default() -> Self { HashValue::zero() }
}

impl AsRef<[u8; HashValue::LENGTH]> for HashValue {
    fn as_ref(&self) -> &[u8; HashValue::LENGTH] { &self.hash }
}

impl std::ops::Deref for HashValue {
    type Target = [u8; Self::LENGTH];

    fn deref(&self) -> &Self::Target { &self.hash }
}

impl std::ops::Index<usize> for HashValue {
    type Output = u8;

    fn index(&self, s: usize) -> &u8 { self.hash.index(s) }
}

impl fmt::Binary for HashValue {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in &self.hash {
            write!(f, "{:08b}", byte)?;
        }
        Ok(())
    }
}

impl fmt::LowerHex for HashValue {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in &self.hash {
            write!(f, "{:02x}", byte)?;
        }
        Ok(())
    }
}

impl fmt::Debug for HashValue {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "HashValue(")?;
        <Self as fmt::LowerHex>::fmt(self, f)?;
        write!(f, ")")?;
        Ok(())
    }
}

/// Will print shortened (4 bytes) hash
impl fmt::Display for HashValue {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for byte in self.hash.iter().take(4) {
            write!(f, "{:02x}", byte)?;
        }
        Ok(())
    }
}

impl From<HashValue> for Bytes {
    fn from(value: HashValue) -> Bytes {
        Bytes::copy_from_slice(value.hash.as_ref())
    }
}

impl FromStr for HashValue {
    type Err = HashValueParseError;

    fn from_str(s: &str) -> Result<Self, HashValueParseError> {
        HashValue::from_hex(s)
    }
}

/// Parse error when attempting to construct a HashValue
#[derive(Clone, Copy, Debug)]
pub struct HashValueParseError;

impl fmt::Display for HashValueParseError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "unable to parse HashValue")
    }
}

impl std::error::Error for HashValueParseError {}

/// An iterator over `HashValue` that generates one bit for each iteration.
pub struct HashValueBitIterator<'a> {
    /// The reference to the bytes that represent the `HashValue`.
    hash_bytes: &'a [u8],
    pos: std::ops::Range<usize>,
    /* invariant hash_bytes.len() == HashValue::LENGTH;
     * invariant pos.end == hash_bytes.len() * 8; */
}

impl<'a> HashValueBitIterator<'a> {
    /// Constructs a new `HashValueBitIterator` using given `HashValue`.
    fn new(hash_value: &'a HashValue) -> Self {
        HashValueBitIterator {
            hash_bytes: hash_value.as_ref(),
            pos: (0..HashValue::LENGTH_IN_BITS),
        }
    }

    /// Returns the `index`-th bit in the bytes.
    fn get_bit(&self, index: usize) -> bool {
        assume!(index < self.pos.end); // assumed precondition
        assume!(self.hash_bytes.len() == HashValue::LENGTH); // invariant
        assume!(self.pos.end == self.hash_bytes.len() * 8); // invariant
        let pos = index / 8;
        let bit = 7 - index % 8;
        (self.hash_bytes[pos] >> bit) & 1 != 0
    }
}

impl<'a> std::iter::Iterator for HashValueBitIterator<'a> {
    type Item = bool;

    fn next(&mut self) -> Option<Self::Item> {
        self.pos.next().map(|x| self.get_bit(x))
    }

    fn size_hint(&self) -> (usize, Option<usize>) { self.pos.size_hint() }
}

impl<'a> std::iter::DoubleEndedIterator for HashValueBitIterator<'a> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.pos.next_back().map(|x| self.get_bit(x))
    }
}

impl<'a> std::iter::ExactSizeIterator for HashValueBitIterator<'a> {}

/// A type that can be cryptographically hashed to produce a `HashValue`.
///
/// In most cases, this trait should not be implemented manually but rather
/// derived using the macros `serde::Serialize`, `CryptoHasher`, and
/// `BCSCryptoHash`.
pub trait CryptoHash {
    /// The associated `Hasher` type which comes with a unique salt for this
    /// type.
    type Hasher: CryptoHasher;

    /// Hashes the object and produces a `HashValue`.
    fn hash(&self) -> HashValue;
}

/// A trait for representing the state of a cryptographic hasher.
pub trait CryptoHasher: Default + std::io::Write {
    /// the seed used to initialize hashing `Self` before the serialization
    /// bytes of the actual value
    fn seed() -> &'static [u8; 32];

    /// Write bytes into the hasher.
    fn update(&mut self, bytes: &[u8]);

    /// Finish constructing the [`HashValue`].
    fn finish(self) -> HashValue;
}

/// The default hasher underlying generated implementations of `CryptoHasher`.
#[doc(hidden)]
#[derive(Clone)]
pub struct DefaultHasher {
    state: Sha3,
}

impl DefaultHasher {
    #[doc(hidden)]
    /// This function does not return a HashValue in the sense of our usual
    /// hashes, but a construction of initial bytes that are fed into any hash
    /// provided we're passed  a (bcs) serialization name as argument.
    pub fn prefixed_hash(buffer: &[u8]) -> [u8; HashValue::LENGTH] {
        // The salt is initial material we prefix to actual value bytes for
        // domain separation. Its length is variable.
        let salt: Vec<u8> = [DIEM_HASH_PREFIX, buffer].concat();
        // The seed is a fixed-length hash of the salt, thereby preventing
        // suffix attacks on the domain separation bytes.
        HashValue::sha3_256_of(&salt[..]).hash
    }

    #[doc(hidden)]
    pub fn new(typename: &[u8]) -> Self {
        let mut state = Sha3::v256();
        if !typename.is_empty() {
            state.update(&Self::prefixed_hash(typename));
        }
        DefaultHasher { state }
    }

    #[doc(hidden)]
    pub fn update(&mut self, bytes: &[u8]) { self.state.update(bytes); }

    #[doc(hidden)]
    pub fn finish(self) -> HashValue {
        let mut hasher = HashValue::default();
        self.state.finalize(hasher.as_ref_mut());
        hasher
    }
}

impl fmt::Debug for DefaultHasher {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "DefaultHasher: state = Sha3")
    }
}

macro_rules! define_hasher {
    (
        $(#[$attr:meta])*
        ($hasher_type: ident, $hasher_name: ident, $seed_name: ident, $salt: expr)
    ) => {

        #[derive(Clone, Debug)]
        $(#[$attr])*
        pub struct $hasher_type(DefaultHasher);

        impl $hasher_type {
            fn new() -> Self {
                $hasher_type(DefaultHasher::new($salt))
            }
        }

        static $hasher_name: Lazy<$hasher_type> = Lazy::new(|| { $hasher_type::new() });
        static $seed_name: OnceCell<[u8; 32]> = OnceCell::new();

        impl Default for $hasher_type {
            fn default() -> Self {
                $hasher_name.clone()
            }
        }

        impl CryptoHasher for $hasher_type {
            fn seed() -> &'static [u8;32] {
                $seed_name.get_or_init(|| {
                    DefaultHasher::prefixed_hash($salt)
                })
            }

            fn update(&mut self, bytes: &[u8]) {
                self.0.update(bytes);
            }

            fn finish(self) -> HashValue {
                self.0.finish()
            }
        }

        impl std::io::Write for $hasher_type {
            fn write(&mut self, bytes: &[u8]) -> std::io::Result<usize> {
                self.0.update(bytes);
                Ok(bytes.len())
            }
            fn flush(&mut self) -> std::io::Result<()> {
                Ok(())
            }
        }
    };
}

define_hasher! {
    /// The hasher used to compute the hash of an internal node in the transaction accumulator.
    (
        TransactionAccumulatorHasher,
        TRANSACTION_ACCUMULATOR_HASHER,
        TRANSACTION_ACCUMULATOR_SEED,
        b"TransactionAccumulator"
    )
}

define_hasher! {
    /// The hasher used to compute the hash of an internal node in the event accumulator.
    (
        EventAccumulatorHasher,
        EVENT_ACCUMULATOR_HASHER,
        EVENT_ACCUMULATOR_SEED,
        b"EventAccumulator"
    )
}

define_hasher! {
    /// The hasher used to compute the hash of an internal node in the Sparse Merkle Tree.
    (
        SparseMerkleInternalHasher,
        SPARSE_MERKLE_INTERNAL_HASHER,
        SPARSE_MERKLE_INTERNAL_SEED,
        b"SparseMerkleInternal"
    )
}

define_hasher! {
    /// The hasher used to compute the hash of an internal node in the transaction accumulator.
    (
        VoteProposalHasher,
        VOTE_PROPOSAL_HASHER,
        VOTE_PROPOSAL_SEED,
        b"VoteProposalHasher"
    )
}

define_hasher! {
    /// The hasher used only for testing. It doesn't have a salt.
    (TestOnlyHasher, TEST_ONLY_HASHER, TEST_ONLY_SEED, b"")
}

fn create_literal_hash(word: &str) -> HashValue {
    let mut s = word.as_bytes().to_vec();
    assert!(s.len() <= HashValue::LENGTH);
    s.resize(HashValue::LENGTH, 0);
    HashValue::from_slice(&s).expect("Cannot fail")
}

/// Placeholder hash of `Accumulator`.
pub static ACCUMULATOR_PLACEHOLDER_HASH: Lazy<HashValue> =
    Lazy::new(|| create_literal_hash("ACCUMULATOR_PLACEHOLDER_HASH"));

/// Placeholder hash of `SparseMerkleTree`.
pub static SPARSE_MERKLE_PLACEHOLDER_HASH: Lazy<HashValue> =
    Lazy::new(|| create_literal_hash("SPARSE_MERKLE_PLACEHOLDER_HASH"));

/// Block id reserved as the id of parent block of the genesis block.
pub static PRE_GENESIS_BLOCK_ID: Lazy<HashValue> =
    Lazy::new(|| create_literal_hash("PRE_GENESIS_BLOCK_ID"));

/// Genesis block id is used as a parent of the very first block executed by the
/// executor.
pub static GENESIS_BLOCK_ID: Lazy<HashValue> = Lazy::new(|| {
    // This maintains the invariant that block.id() == block.hash(), for
    // the genesis block and allows us to (de/)serialize it consistently
    HashValue::new([
        0x5e, 0x10, 0xba, 0xd4, 0x5b, 0x35, 0xed, 0x92, 0x9c, 0xd6, 0xd2, 0xc7,
        0x09, 0x8b, 0x13, 0x5d, 0x02, 0xdd, 0x25, 0x9a, 0xe8, 0x8a, 0x8d, 0x09,
        0xf4, 0xeb, 0x5f, 0xba, 0xe9, 0xa6, 0xf6, 0xe4,
    ])
});

/// Provides a test_only_hash() method that can be used in tests on types that
/// implement `serde::Serialize`.
///
/// # Example
/// ```
/// use diem_crypto::hash::TestOnlyHash;
///
/// b"hello world".test_only_hash();
/// ```
pub trait TestOnlyHash {
    /// Generates a hash used only for tests.
    fn test_only_hash(&self) -> HashValue;
}

impl<T: ser::Serialize + ?Sized> TestOnlyHash for T {
    fn test_only_hash(&self) -> HashValue {
        let bytes = bcs::to_bytes(self).expect("serialize failed during hash.");
        let mut hasher = TestOnlyHasher::default();
        hasher.update(&bytes);
        hasher.finish()
    }
}