1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/
//! This module defines traits and implementations of
//! [cryptographic hash functions](https://en.wikipedia.org/wiki/Cryptographic_hash_function)
//! for the Diem project.
//!
//! It is designed to help authors protect against two types of real world
//! attacks:
//!
//! 1. **Semantic Ambiguity**: imagine that Alice has a private key and is using
//! two different applications, X and Y. X asks Alice to sign a message
//! saying "I am Alice". Alice accepts to sign this message in the context of
//! X. However, unbeknownst to Alice, in application Y, messages beginning
//! with the letter "I" represent transfers. " am " represents a transfer of
//! 500 coins and "Alice" can be interpreted as a destination address. When
//! Alice signed the message she needed to be aware of how other applications
//! might interpret that message.
//!
//! 2. **Format Ambiguity**: imagine a program that hashes a pair of strings. To
//! hash the strings `a` and `b` it hashes `a + "||" + b`. The pair of
//! strings `a="foo||", b = "bar"` and `a="foo", b = "||bar"` result in the
//! same input to the hash function and therefore the same hash. This creates
//! a collision.
//!
//! Regarding (1), this library makes it easy for Diem developers to create as
//! many new "hashable" Rust types as needed so that each Rust type hashed and
//! signed in Diem has a unique meaning, that is, unambiguously captures the
//! intent of a signer.
//!
//! Regarding (2), this library provides the `CryptoHasher` abstraction to
//! easily manage cryptographic seeds for hashing. Hashing seeds aim to ensure
//! that the hashes of values of a given type `MyNewStruct` never collide with
//! hashes of values from another type.
//!
//! Finally, to prevent format ambiguity within a same type `MyNewStruct` and
//! facilitate protocol specifications, we use [Binary Canonical Serialization (BCS)](https://docs.rs/bcs/)
//! as the recommended solution to write Rust values into a hasher.
//!
//! # Quick Start
//!
//! To obtain a `hash()` method for any new type `MyNewStruct`, it is (strongly)
//! recommended to use the derive macros of `serde` and `diem_crypto_derive` as
//! follows:
//!
//! ```
//! use diem_crypto::hash::CryptoHash;
//! use diem_crypto_derive::{BCSCryptoHash, CryptoHasher};
//! use serde::{Deserialize, Serialize};
//! #[derive(Serialize, Deserialize, CryptoHasher, BCSCryptoHash)]
//! struct MyNewStruct {/* ... */}
//!
//! let value = MyNewStruct { /*...*/ };
//! value.hash();
//! ```
//!
//! Under the hood, this will generate a new implementation `MyNewStructHasher`
//! for the trait `CryptoHasher` and implement the trait `CryptoHash` for
//! `MyNewStruct` using BCS.
//!
//! # Implementing New Hashers
//!
//! The trait `CryptoHasher` captures the notion of a pre-seeded hash function,
//! aka a "hasher". New implementations can be defined in two ways.
//!
//! ## Derive macro (recommended)
//!
//! For any new structure `MyNewStruct` that needs to be hashed, it is
//! recommended to simply use the derive macro [`CryptoHasher`](https://doc.rust-lang.org/reference/procedural-macros.html).
//!
//! ```
//! use diem_crypto_derive::CryptoHasher;
//! use serde::Deserialize;
//! #[derive(Deserialize, CryptoHasher)]
//! #[serde(rename = "OptionalCustomSerdeName")]
//! struct MyNewStruct {/* ... */}
//! ```
//!
//! The macro `CryptoHasher` will define a hasher automatically called
//! `MyNewStructHasher`, and derive a salt using the name of the type as seen by
//! the Serde library. In the example above, this name was changed using the
//! Serde parameter `rename`: the salt will be based on the value
//! `OptionalCustomSerdeName` instead of the default name `MyNewStruct`.
//!
//! ## Customized hashers
//!
//! **IMPORTANT:** Do NOT use this for new code unless you know what you are
//! doing.
//!
//! This library also provides a few customized hashers defined in the code as
//! follows:
//!
//! ```
//! # // To get around that there's no way to doc-test a non-exported macro:
//! # macro_rules! define_hasher { ($e:expr) => () }
//! define_hasher! { (MyNewDataHasher, MY_NEW_DATA_HASHER, MY_NEW_DATA_SEED,
//! b"MyUniqueSaltString") }
//! ```
//!
//! # Using a hasher directly
//!
//! **IMPORTANT:** Do NOT use this for new code unless you know what you are
//! doing.
//! ```
//! use diem_crypto::hash::{CryptoHasher, TestOnlyHasher};
//!
//! let mut hasher = TestOnlyHasher::default();
//! hasher.update("Test message".as_bytes());
//! let hash_value = hasher.finish();
//! ```
#![allow(clippy::integer_arithmetic)]
use bytes::Bytes;
use cfx_types::U256;
use hex::FromHex;
use mirai_annotations::*;
use once_cell::sync::{Lazy, OnceCell};
#[cfg(any(test, feature = "fuzzing"))]
use proptest_derive::Arbitrary;
use rand::{rngs::OsRng, Rng};
use serde::{de, ser};
use std::{
self,
convert::{AsRef, TryFrom},
fmt,
str::FromStr,
};
use tiny_keccak::{Hasher, Sha3};
/// A prefix used to begin the salt of every diem hashable structure. The salt
/// consists in this global prefix, concatenated with the specified
/// serialization name of the struct.
pub(crate) const DIEM_HASH_PREFIX: &[u8] = b"DIEM::";
/// Output value of our hash function. Intentionally opaque for safety and
/// modularity.
#[derive(Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)]
#[cfg_attr(any(test, feature = "fuzzing"), derive(Arbitrary))]
pub struct HashValue {
hash: [u8; HashValue::LENGTH],
}
impl HashValue {
/// The length of the hash in bytes.
pub const LENGTH: usize = 32;
/// The length of the hash in bits.
pub const LENGTH_IN_BITS: usize = Self::LENGTH * 8;
/// Create a new [`HashValue`] from a byte array.
pub fn new(hash: [u8; HashValue::LENGTH]) -> Self { HashValue { hash } }
/// Create from a slice (e.g. retrieved from storage).
pub fn from_slice<T: AsRef<[u8]>>(
bytes: T,
) -> Result<Self, HashValueParseError> {
<[u8; Self::LENGTH]>::try_from(bytes.as_ref())
.map_err(|_| HashValueParseError)
.map(Self::new)
}
/// Dumps into a vector.
pub fn to_vec(&self) -> Vec<u8> { self.hash.to_vec() }
/// Creates a zero-initialized instance.
pub const fn zero() -> Self {
HashValue {
hash: [0; HashValue::LENGTH],
}
}
/// Create a cryptographically random instance.
pub fn random() -> Self {
let mut rng = OsRng;
let hash: [u8; HashValue::LENGTH] = rng.gen();
HashValue { hash }
}
/// Creates a random instance with given rng. Useful in unit tests.
pub fn random_with_rng<R: Rng>(rng: &mut R) -> Self {
let hash: [u8; HashValue::LENGTH] = rng.gen();
HashValue { hash }
}
/// Convenience function that computes a `HashValue` internally equal to
/// the sha3_256 of a byte buffer. It will handle hasher creation, data
/// feeding and finalization.
///
/// Note this will not result in the `<T as CryptoHash>::hash()` for any
/// reasonable struct T, as this computes a sha3 without any ornaments.
pub fn sha3_256_of(buffer: &[u8]) -> Self {
let mut sha3 = Sha3::v256();
sha3.update(buffer);
HashValue::from_keccak(sha3)
}
#[cfg(test)]
pub fn from_iter_sha3<'a, I>(buffers: I) -> Self
where I: IntoIterator<Item = &'a [u8]> {
let mut sha3 = Sha3::v256();
for buffer in buffers {
sha3.update(buffer);
}
HashValue::from_keccak(sha3)
}
fn as_ref_mut(&mut self) -> &mut [u8] { &mut self.hash[..] }
fn from_keccak(state: Sha3) -> Self {
let mut hash = Self::zero();
state.finalize(hash.as_ref_mut());
hash
}
/// Returns a `HashValueBitIterator` over all the bits that represent this
/// `HashValue`.
pub fn iter_bits(&self) -> HashValueBitIterator<'_> {
HashValueBitIterator::new(self)
}
/// Constructs a `HashValue` from an iterator of bits.
pub fn from_bit_iter(
iter: impl ExactSizeIterator<Item = bool>,
) -> Result<Self, HashValueParseError> {
if iter.len() != Self::LENGTH_IN_BITS {
return Err(HashValueParseError);
}
let mut buf = [0; Self::LENGTH];
for (i, bit) in iter.enumerate() {
if bit {
buf[i / 8] |= 1 << (7 - i % 8);
}
}
Ok(Self::new(buf))
}
/// Returns the length of common prefix of `self` and `other` in bits.
pub fn common_prefix_bits_len(&self, other: HashValue) -> usize {
self.iter_bits()
.zip(other.iter_bits())
.take_while(|(x, y)| x == y)
.count()
}
/// Full hex representation of a given hash value.
pub fn to_hex(&self) -> String { format!("{:x}", self) }
/// Parse a given hex string to a hash value.
pub fn from_hex<T: AsRef<[u8]>>(
hex: T,
) -> Result<Self, HashValueParseError> {
<[u8; Self::LENGTH]>::from_hex(hex)
.map_err(|_| HashValueParseError)
.map(Self::new)
}
/// Convert a hash to big int (U256).
pub fn to_u256(&self) -> U256 { U256::from_big_endian(self.as_ref()) }
}
impl ser::Serialize for HashValue {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: ser::Serializer {
if serializer.is_human_readable() {
serializer.serialize_str(&self.to_hex())
} else {
// In order to preserve the Serde data model and help analysis
// tools, make sure to wrap our value in a container
// with the same name as the original type.
serializer.serialize_newtype_struct(
"HashValue",
serde_bytes::Bytes::new(&self.hash[..]),
)
}
}
}
impl<'de> de::Deserialize<'de> for HashValue {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: de::Deserializer<'de> {
if deserializer.is_human_readable() {
let encoded_hash = <String>::deserialize(deserializer)?;
HashValue::from_hex(encoded_hash.as_str())
.map_err(<D::Error as ::serde::de::Error>::custom)
} else {
// See comment in serialize.
#[derive(::serde::Deserialize)]
#[serde(rename = "HashValue")]
struct Value<'a>(&'a [u8]);
let value = Value::deserialize(deserializer)?;
Self::from_slice(value.0)
.map_err(<D::Error as ::serde::de::Error>::custom)
}
}
}
impl Default for HashValue {
fn default() -> Self { HashValue::zero() }
}
impl AsRef<[u8; HashValue::LENGTH]> for HashValue {
fn as_ref(&self) -> &[u8; HashValue::LENGTH] { &self.hash }
}
impl std::ops::Deref for HashValue {
type Target = [u8; Self::LENGTH];
fn deref(&self) -> &Self::Target { &self.hash }
}
impl std::ops::Index<usize> for HashValue {
type Output = u8;
fn index(&self, s: usize) -> &u8 { self.hash.index(s) }
}
impl fmt::Binary for HashValue {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for byte in &self.hash {
write!(f, "{:08b}", byte)?;
}
Ok(())
}
}
impl fmt::LowerHex for HashValue {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for byte in &self.hash {
write!(f, "{:02x}", byte)?;
}
Ok(())
}
}
impl fmt::Debug for HashValue {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "HashValue(")?;
<Self as fmt::LowerHex>::fmt(self, f)?;
write!(f, ")")?;
Ok(())
}
}
/// Will print shortened (4 bytes) hash
impl fmt::Display for HashValue {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for byte in self.hash.iter().take(4) {
write!(f, "{:02x}", byte)?;
}
Ok(())
}
}
impl From<HashValue> for Bytes {
fn from(value: HashValue) -> Bytes {
Bytes::copy_from_slice(value.hash.as_ref())
}
}
impl FromStr for HashValue {
type Err = HashValueParseError;
fn from_str(s: &str) -> Result<Self, HashValueParseError> {
HashValue::from_hex(s)
}
}
/// Parse error when attempting to construct a HashValue
#[derive(Clone, Copy, Debug)]
pub struct HashValueParseError;
impl fmt::Display for HashValueParseError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "unable to parse HashValue")
}
}
impl std::error::Error for HashValueParseError {}
/// An iterator over `HashValue` that generates one bit for each iteration.
pub struct HashValueBitIterator<'a> {
/// The reference to the bytes that represent the `HashValue`.
hash_bytes: &'a [u8],
pos: std::ops::Range<usize>,
/* invariant hash_bytes.len() == HashValue::LENGTH;
* invariant pos.end == hash_bytes.len() * 8; */
}
impl<'a> HashValueBitIterator<'a> {
/// Constructs a new `HashValueBitIterator` using given `HashValue`.
fn new(hash_value: &'a HashValue) -> Self {
HashValueBitIterator {
hash_bytes: hash_value.as_ref(),
pos: (0..HashValue::LENGTH_IN_BITS),
}
}
/// Returns the `index`-th bit in the bytes.
fn get_bit(&self, index: usize) -> bool {
assume!(index < self.pos.end); // assumed precondition
assume!(self.hash_bytes.len() == HashValue::LENGTH); // invariant
assume!(self.pos.end == self.hash_bytes.len() * 8); // invariant
let pos = index / 8;
let bit = 7 - index % 8;
(self.hash_bytes[pos] >> bit) & 1 != 0
}
}
impl<'a> std::iter::Iterator for HashValueBitIterator<'a> {
type Item = bool;
fn next(&mut self) -> Option<Self::Item> {
self.pos.next().map(|x| self.get_bit(x))
}
fn size_hint(&self) -> (usize, Option<usize>) { self.pos.size_hint() }
}
impl<'a> std::iter::DoubleEndedIterator for HashValueBitIterator<'a> {
fn next_back(&mut self) -> Option<Self::Item> {
self.pos.next_back().map(|x| self.get_bit(x))
}
}
impl<'a> std::iter::ExactSizeIterator for HashValueBitIterator<'a> {}
/// A type that can be cryptographically hashed to produce a `HashValue`.
///
/// In most cases, this trait should not be implemented manually but rather
/// derived using the macros `serde::Serialize`, `CryptoHasher`, and
/// `BCSCryptoHash`.
pub trait CryptoHash {
/// The associated `Hasher` type which comes with a unique salt for this
/// type.
type Hasher: CryptoHasher;
/// Hashes the object and produces a `HashValue`.
fn hash(&self) -> HashValue;
}
/// A trait for representing the state of a cryptographic hasher.
pub trait CryptoHasher: Default + std::io::Write {
/// the seed used to initialize hashing `Self` before the serialization
/// bytes of the actual value
fn seed() -> &'static [u8; 32];
/// Write bytes into the hasher.
fn update(&mut self, bytes: &[u8]);
/// Finish constructing the [`HashValue`].
fn finish(self) -> HashValue;
}
/// The default hasher underlying generated implementations of `CryptoHasher`.
#[doc(hidden)]
#[derive(Clone)]
pub struct DefaultHasher {
state: Sha3,
}
impl DefaultHasher {
#[doc(hidden)]
/// This function does not return a HashValue in the sense of our usual
/// hashes, but a construction of initial bytes that are fed into any hash
/// provided we're passed a (bcs) serialization name as argument.
pub fn prefixed_hash(buffer: &[u8]) -> [u8; HashValue::LENGTH] {
// The salt is initial material we prefix to actual value bytes for
// domain separation. Its length is variable.
let salt: Vec<u8> = [DIEM_HASH_PREFIX, buffer].concat();
// The seed is a fixed-length hash of the salt, thereby preventing
// suffix attacks on the domain separation bytes.
HashValue::sha3_256_of(&salt[..]).hash
}
#[doc(hidden)]
pub fn new(typename: &[u8]) -> Self {
let mut state = Sha3::v256();
if !typename.is_empty() {
state.update(&Self::prefixed_hash(typename));
}
DefaultHasher { state }
}
#[doc(hidden)]
pub fn update(&mut self, bytes: &[u8]) { self.state.update(bytes); }
#[doc(hidden)]
pub fn finish(self) -> HashValue {
let mut hasher = HashValue::default();
self.state.finalize(hasher.as_ref_mut());
hasher
}
}
impl fmt::Debug for DefaultHasher {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "DefaultHasher: state = Sha3")
}
}
macro_rules! define_hasher {
(
$(#[$attr:meta])*
($hasher_type: ident, $hasher_name: ident, $seed_name: ident, $salt: expr)
) => {
#[derive(Clone, Debug)]
$(#[$attr])*
pub struct $hasher_type(DefaultHasher);
impl $hasher_type {
fn new() -> Self {
$hasher_type(DefaultHasher::new($salt))
}
}
static $hasher_name: Lazy<$hasher_type> = Lazy::new(|| { $hasher_type::new() });
static $seed_name: OnceCell<[u8; 32]> = OnceCell::new();
impl Default for $hasher_type {
fn default() -> Self {
$hasher_name.clone()
}
}
impl CryptoHasher for $hasher_type {
fn seed() -> &'static [u8;32] {
$seed_name.get_or_init(|| {
DefaultHasher::prefixed_hash($salt)
})
}
fn update(&mut self, bytes: &[u8]) {
self.0.update(bytes);
}
fn finish(self) -> HashValue {
self.0.finish()
}
}
impl std::io::Write for $hasher_type {
fn write(&mut self, bytes: &[u8]) -> std::io::Result<usize> {
self.0.update(bytes);
Ok(bytes.len())
}
fn flush(&mut self) -> std::io::Result<()> {
Ok(())
}
}
};
}
define_hasher! {
/// The hasher used to compute the hash of an internal node in the transaction accumulator.
(
TransactionAccumulatorHasher,
TRANSACTION_ACCUMULATOR_HASHER,
TRANSACTION_ACCUMULATOR_SEED,
b"TransactionAccumulator"
)
}
define_hasher! {
/// The hasher used to compute the hash of an internal node in the event accumulator.
(
EventAccumulatorHasher,
EVENT_ACCUMULATOR_HASHER,
EVENT_ACCUMULATOR_SEED,
b"EventAccumulator"
)
}
define_hasher! {
/// The hasher used to compute the hash of an internal node in the Sparse Merkle Tree.
(
SparseMerkleInternalHasher,
SPARSE_MERKLE_INTERNAL_HASHER,
SPARSE_MERKLE_INTERNAL_SEED,
b"SparseMerkleInternal"
)
}
define_hasher! {
/// The hasher used to compute the hash of an internal node in the transaction accumulator.
(
VoteProposalHasher,
VOTE_PROPOSAL_HASHER,
VOTE_PROPOSAL_SEED,
b"VoteProposalHasher"
)
}
define_hasher! {
/// The hasher used only for testing. It doesn't have a salt.
(TestOnlyHasher, TEST_ONLY_HASHER, TEST_ONLY_SEED, b"")
}
fn create_literal_hash(word: &str) -> HashValue {
let mut s = word.as_bytes().to_vec();
assert!(s.len() <= HashValue::LENGTH);
s.resize(HashValue::LENGTH, 0);
HashValue::from_slice(&s).expect("Cannot fail")
}
/// Placeholder hash of `Accumulator`.
pub static ACCUMULATOR_PLACEHOLDER_HASH: Lazy<HashValue> =
Lazy::new(|| create_literal_hash("ACCUMULATOR_PLACEHOLDER_HASH"));
/// Placeholder hash of `SparseMerkleTree`.
pub static SPARSE_MERKLE_PLACEHOLDER_HASH: Lazy<HashValue> =
Lazy::new(|| create_literal_hash("SPARSE_MERKLE_PLACEHOLDER_HASH"));
/// Block id reserved as the id of parent block of the genesis block.
pub static PRE_GENESIS_BLOCK_ID: Lazy<HashValue> =
Lazy::new(|| create_literal_hash("PRE_GENESIS_BLOCK_ID"));
/// Genesis block id is used as a parent of the very first block executed by the
/// executor.
pub static GENESIS_BLOCK_ID: Lazy<HashValue> = Lazy::new(|| {
// This maintains the invariant that block.id() == block.hash(), for
// the genesis block and allows us to (de/)serialize it consistently
HashValue::new([
0x5e, 0x10, 0xba, 0xd4, 0x5b, 0x35, 0xed, 0x92, 0x9c, 0xd6, 0xd2, 0xc7,
0x09, 0x8b, 0x13, 0x5d, 0x02, 0xdd, 0x25, 0x9a, 0xe8, 0x8a, 0x8d, 0x09,
0xf4, 0xeb, 0x5f, 0xba, 0xe9, 0xa6, 0xf6, 0xe4,
])
});
/// Provides a test_only_hash() method that can be used in tests on types that
/// implement `serde::Serialize`.
///
/// # Example
/// ```
/// use diem_crypto::hash::TestOnlyHash;
///
/// b"hello world".test_only_hash();
/// ```
pub trait TestOnlyHash {
/// Generates a hash used only for tests.
fn test_only_hash(&self) -> HashValue;
}
impl<T: ser::Serialize + ?Sized> TestOnlyHash for T {
fn test_only_hash(&self) -> HashValue {
let bytes = bcs::to_bytes(self).expect("serialize failed during hash.");
let mut hasher = TestOnlyHasher::default();
hasher.update(&bytes);
hasher.finish()
}
}