1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/
//! This module provides an API for the PureEdDSA signature scheme over the
//! ed25519 twisted Edwards curve as defined in [RFC8032](https://tools.ietf.org/html/rfc8032).
//!
//! Signature verification also checks and rejects non-canonical signatures.
//!
//! # Examples
//!
//! ```
//! use diem_crypto::{
//! ed25519::*,
//! traits::{Signature, SigningKey, Uniform},
//! };
//! use diem_crypto_derive::{BCSCryptoHash, CryptoHasher};
//! use rand::{rngs::StdRng, SeedableRng};
//! use serde::{Deserialize, Serialize};
//!
//! #[derive(Serialize, Deserialize, CryptoHasher, BCSCryptoHash)]
//! pub struct TestCryptoDocTest(String);
//! let message = TestCryptoDocTest("Test message".to_string());
//!
//! let mut rng: StdRng = SeedableRng::from_seed([0; 32]);
//! let private_key = Ed25519PrivateKey::generate(&mut rng);
//! let public_key: Ed25519PublicKey = (&private_key).into();
//! let signature = private_key.sign(&message);
//! assert!(signature.verify(&message, &public_key).is_ok());
//! ```
//! **Note**: The above example generates a private key using a private function
//! intended only for testing purposes. Production code should find an alternate
//! means for secure key generation.
#![allow(clippy::integer_arithmetic)]
use crate::{
hash::{CryptoHash, CryptoHasher},
traits::*,
};
use anyhow::{anyhow, Result};
use core::convert::TryFrom;
use diem_crypto_derive::{
DeserializeKey, SerializeKey, SilentDebug, SilentDisplay,
};
use mirai_annotations::*;
use serde::Serialize;
use std::{cmp::Ordering, fmt};
/// The length of the Ed25519PrivateKey
pub const ED25519_PRIVATE_KEY_LENGTH: usize = ed25519_dalek::SECRET_KEY_LENGTH;
/// The length of the Ed25519PublicKey
pub const ED25519_PUBLIC_KEY_LENGTH: usize = ed25519_dalek::PUBLIC_KEY_LENGTH;
/// The length of the Ed25519Signature
pub const ED25519_SIGNATURE_LENGTH: usize = ed25519_dalek::SIGNATURE_LENGTH;
/// The order of ed25519 as defined in [RFC8032](https://tools.ietf.org/html/rfc8032).
const L: [u8; 32] = [
0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2,
0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
];
/// An Ed25519 private key
#[derive(DeserializeKey, SerializeKey, SilentDebug, SilentDisplay)]
pub struct Ed25519PrivateKey(ed25519_dalek::SecretKey);
#[cfg(feature = "assert-private-keys-not-cloneable")]
static_assertions::assert_not_impl_any!(Ed25519PrivateKey: Clone);
#[cfg(any(test, feature = "cloneable-private-keys"))]
impl Clone for Ed25519PrivateKey {
fn clone(&self) -> Self {
let serialized: &[u8] = &(self.to_bytes());
Ed25519PrivateKey::try_from(serialized).unwrap()
}
}
/// An Ed25519 public key
#[derive(DeserializeKey, Clone, SerializeKey)]
pub struct Ed25519PublicKey(ed25519_dalek::PublicKey);
#[cfg(mirai)]
use crate::tags::ValidatedPublicKeyTag;
#[cfg(not(mirai))]
struct ValidatedPublicKeyTag {}
/// An Ed25519 signature
#[derive(DeserializeKey, Clone, SerializeKey)]
pub struct Ed25519Signature(ed25519_dalek::Signature);
impl Ed25519PrivateKey {
/// The length of the Ed25519PrivateKey
pub const LENGTH: usize = ed25519_dalek::SECRET_KEY_LENGTH;
/// Serialize an Ed25519PrivateKey.
pub fn to_bytes(&self) -> [u8; ED25519_PRIVATE_KEY_LENGTH] {
self.0.to_bytes()
}
/// Deserialize an Ed25519PrivateKey without any validation checks apart
/// from expected key size.
fn from_bytes_unchecked(
bytes: &[u8],
) -> std::result::Result<Ed25519PrivateKey, CryptoMaterialError> {
match ed25519_dalek::SecretKey::from_bytes(bytes) {
Ok(dalek_secret_key) => Ok(Ed25519PrivateKey(dalek_secret_key)),
Err(_) => Err(CryptoMaterialError::DeserializationError),
}
}
/// Private function aimed at minimizing code duplication between sign
/// methods of the SigningKey implementation. This should remain private.
fn sign_arbitrary_message(&self, message: &[u8]) -> Ed25519Signature {
let secret_key: &ed25519_dalek::SecretKey = &self.0;
let public_key: Ed25519PublicKey = self.into();
let expanded_secret_key: ed25519_dalek::ExpandedSecretKey =
ed25519_dalek::ExpandedSecretKey::from(secret_key);
let sig = expanded_secret_key.sign(message.as_ref(), &public_key.0);
Ed25519Signature(sig)
}
}
impl Ed25519PublicKey {
/// Serialize an Ed25519PublicKey.
pub fn to_bytes(&self) -> [u8; ED25519_PUBLIC_KEY_LENGTH] {
self.0.to_bytes()
}
/// Deserialize an Ed25519PublicKey without any validation checks apart from
/// expected key size.
pub(crate) fn from_bytes_unchecked(
bytes: &[u8],
) -> std::result::Result<Ed25519PublicKey, CryptoMaterialError> {
match ed25519_dalek::PublicKey::from_bytes(bytes) {
Ok(dalek_public_key) => Ok(Ed25519PublicKey(dalek_public_key)),
Err(_) => Err(CryptoMaterialError::DeserializationError),
}
}
/// Deserialize an Ed25519PublicKey from its representation as an x25519
/// public key, along with an indication of sign. This is meant to
/// compensate for the poor key storage capabilities of key management
/// solutions, and NOT to promote double usage of keys under several
/// schemes, which would lead to BAD vulnerabilities.
///
/// Arguments:
/// - `x25519_bytes`: bit representation of a public key in clamped
/// Montgomery form, a.k.a. the x25519 public key format.
/// - `negative`: whether to interpret the given point as a negative point,
/// as the Montgomery form erases the sign byte. By XEdDSA convention, if
/// you expect to ever convert this back to an x25519 public key, you
/// should pass `false` for this argument.
#[cfg(test)]
pub(crate) fn from_x25519_public_bytes(
x25519_bytes: &[u8], negative: bool,
) -> Result<Self, CryptoMaterialError> {
if x25519_bytes.len() != 32 {
return Err(CryptoMaterialError::DeserializationError);
}
let key_bits = {
let mut bits = [0u8; 32];
bits.copy_from_slice(x25519_bytes);
bits
};
let mtg_point = curve25519_dalek::montgomery::MontgomeryPoint(key_bits);
let sign = if negative { 1u8 } else { 0u8 };
let ed_point = mtg_point
.to_edwards(sign)
.ok_or(CryptoMaterialError::DeserializationError)?;
Ed25519PublicKey::try_from(&ed_point.compress().as_bytes()[..])
}
}
impl Ed25519Signature {
/// The length of the Ed25519Signature
pub const LENGTH: usize = ed25519_dalek::SIGNATURE_LENGTH;
/// Serialize an Ed25519Signature.
pub fn to_bytes(&self) -> [u8; ED25519_SIGNATURE_LENGTH] {
self.0.to_bytes()
}
/// Deserialize an Ed25519Signature without any validation checks
/// (malleability) apart from expected key size.
pub(crate) fn from_bytes_unchecked(
bytes: &[u8],
) -> std::result::Result<Ed25519Signature, CryptoMaterialError> {
match ed25519_dalek::Signature::try_from(bytes) {
Ok(dalek_signature) => Ok(Ed25519Signature(dalek_signature)),
Err(_) => Err(CryptoMaterialError::DeserializationError),
}
}
/// return an all-zero signature (for test only)
#[cfg(any(test, feature = "fuzzing"))]
pub fn dummy_signature() -> Self {
Self::from_bytes_unchecked(&[0u8; Self::LENGTH]).unwrap()
}
/// Check for correct size and third-party based signature malleability
/// issues. This method is required to ensure that given a valid
/// signature for some message under some key, an attacker cannot
/// produce another valid signature for the same message and key.
///
/// According to [RFC8032](https://tools.ietf.org/html/rfc8032), signatures comprise elements
/// {R, S} and we should enforce that S is of canonical form (smaller than
/// L, where L is the order of edwards25519 curve group) to prevent
/// signature malleability. Without this check, one could add a multiple
/// of L into S and still pass signature verification, resulting in
/// a distinct yet valid signature.
///
/// This method does not check the R component of the signature, because R
/// is hashed during signing and verification to compute h = H(ENC(R) ||
/// ENC(A) || M), which means that a third-party cannot modify R without
/// being detected.
///
/// Note: It's true that malicious signers can already produce varying
/// signatures by choosing a different nonce, so this method protects
/// against malleability attacks performed by a non-signer.
pub fn check_malleability(
bytes: &[u8],
) -> std::result::Result<(), CryptoMaterialError> {
if bytes.len() != ED25519_SIGNATURE_LENGTH {
return Err(CryptoMaterialError::WrongLengthError);
}
if !check_s_lt_l(&bytes[32..]) {
return Err(CryptoMaterialError::CanonicalRepresentationError);
}
Ok(())
}
}
///////////////////////
// PrivateKey Traits //
///////////////////////
impl PrivateKey for Ed25519PrivateKey {
type PublicKeyMaterial = Ed25519PublicKey;
}
impl SigningKey for Ed25519PrivateKey {
type SignatureMaterial = Ed25519Signature;
type VerifyingKeyMaterial = Ed25519PublicKey;
fn sign<T: CryptoHash + Serialize>(&self, message: &T) -> Ed25519Signature {
let mut bytes = <T::Hasher as CryptoHasher>::seed().to_vec();
bcs::serialize_into(&mut bytes, &message)
.map_err(|_| CryptoMaterialError::SerializationError)
.expect("Serialization of signable material should not fail.");
Ed25519PrivateKey::sign_arbitrary_message(&self, bytes.as_ref())
}
#[cfg(any(test, feature = "fuzzing"))]
fn sign_arbitrary_message(&self, message: &[u8]) -> Ed25519Signature {
Ed25519PrivateKey::sign_arbitrary_message(self, message)
}
}
impl Uniform for Ed25519PrivateKey {
fn generate<R>(rng: &mut R) -> Self
where R: ::rand::RngCore + ::rand::CryptoRng {
Ed25519PrivateKey(ed25519_dalek::SecretKey::generate(rng))
}
}
impl PartialEq<Self> for Ed25519PrivateKey {
fn eq(&self, other: &Self) -> bool { self.to_bytes() == other.to_bytes() }
}
impl Eq for Ed25519PrivateKey {}
// We could have a distinct kind of validation for the PrivateKey, for
// ex. checking the derived PublicKey is valid?
impl TryFrom<&[u8]> for Ed25519PrivateKey {
type Error = CryptoMaterialError;
/// Deserialize an Ed25519PrivateKey. This method will also check for key
/// validity.
fn try_from(
bytes: &[u8],
) -> std::result::Result<Ed25519PrivateKey, CryptoMaterialError> {
// Note that the only requirement is that the size of the key is 32
// bytes, something that is already checked during
// deserialization of ed25519_dalek::SecretKey
// Also, the underlying ed25519_dalek implementation ensures that the
// derived public key is safe and it will not lie in a
// small-order group, thus no extra check for PublicKey
// validation is required.
Ed25519PrivateKey::from_bytes_unchecked(bytes)
}
}
impl Length for Ed25519PrivateKey {
fn length(&self) -> usize { Self::LENGTH }
}
impl ValidCryptoMaterial for Ed25519PrivateKey {
fn to_bytes(&self) -> Vec<u8> { self.to_bytes().to_vec() }
}
impl Genesis for Ed25519PrivateKey {
fn genesis() -> Self {
let mut buf = [0u8; ED25519_PRIVATE_KEY_LENGTH];
buf[ED25519_PRIVATE_KEY_LENGTH - 1] = 1;
Self::try_from(buf.as_ref()).unwrap()
}
}
//////////////////////
// PublicKey Traits //
//////////////////////
// Implementing From<&PrivateKey<...>> allows to derive a public key in a more
// elegant fashion
impl From<&Ed25519PrivateKey> for Ed25519PublicKey {
fn from(private_key: &Ed25519PrivateKey) -> Self {
let secret: &ed25519_dalek::SecretKey = &private_key.0;
let public: ed25519_dalek::PublicKey = secret.into();
Ed25519PublicKey(public)
}
}
// We deduce PublicKey from this
impl PublicKey for Ed25519PublicKey {
type PrivateKeyMaterial = Ed25519PrivateKey;
}
impl std::hash::Hash for Ed25519PublicKey {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
let encoded_pubkey = self.to_bytes();
state.write(&encoded_pubkey);
}
}
// Those are required by the implementation of hash above
impl PartialEq for Ed25519PublicKey {
fn eq(&self, other: &Ed25519PublicKey) -> bool {
self.to_bytes() == other.to_bytes()
}
}
impl Eq for Ed25519PublicKey {}
// We deduce VerifyingKey from pointing to the signature material
// we get the ability to do `pubkey.validate(msg, signature)`
impl VerifyingKey for Ed25519PublicKey {
type SignatureMaterial = Ed25519Signature;
type SigningKeyMaterial = Ed25519PrivateKey;
}
impl fmt::Display for Ed25519PublicKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", hex::encode(&self.0.as_bytes()))
}
}
impl fmt::Debug for Ed25519PublicKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Ed25519PublicKey({})", self)
}
}
impl TryFrom<&[u8]> for Ed25519PublicKey {
type Error = CryptoMaterialError;
/// Deserialize an Ed25519PublicKey. This method will also check for key
/// validity, for instance it will only deserialize keys that are safe
/// against small subgroup attacks.
fn try_from(
bytes: &[u8],
) -> std::result::Result<Ed25519PublicKey, CryptoMaterialError> {
// We need to access the Edwards point which is not directly accessible
// from ed25519_dalek::PublicKey, so we need to do some custom
// deserialization.
if bytes.len() != ED25519_PUBLIC_KEY_LENGTH {
return Err(CryptoMaterialError::WrongLengthError);
}
let mut bits = [0u8; ED25519_PUBLIC_KEY_LENGTH];
bits.copy_from_slice(&bytes[..ED25519_PUBLIC_KEY_LENGTH]);
let compressed = curve25519_dalek::edwards::CompressedEdwardsY(bits);
let point = compressed
.decompress()
.ok_or(CryptoMaterialError::DeserializationError)?;
// Check if the point lies on a small subgroup. This is required
// when using curves with a small cofactor (in ed25519, cofactor = 8).
if point.is_small_order() {
return Err(CryptoMaterialError::SmallSubgroupError);
}
// Unfortunately, tuple struct `PublicKey` is private so we cannot
// Ok(Ed25519PublicKey(ed25519_dalek::PublicKey(compressed, point)))
// and we have to again invoke deserialization.
let public_key = Ed25519PublicKey::from_bytes_unchecked(bytes)?;
add_tag!(&public_key, ValidatedPublicKeyTag); // This key has gone through validity checks.
Ok(public_key)
}
}
impl Length for Ed25519PublicKey {
fn length(&self) -> usize { ED25519_PUBLIC_KEY_LENGTH }
}
impl ValidCryptoMaterial for Ed25519PublicKey {
fn to_bytes(&self) -> Vec<u8> { self.0.to_bytes().to_vec() }
}
//////////////////////
// Signature Traits //
//////////////////////
impl Signature for Ed25519Signature {
type SigningKeyMaterial = Ed25519PrivateKey;
type VerifyingKeyMaterial = Ed25519PublicKey;
/// Verifies that the provided signature is valid for the provided
/// message, according to the RFC8032 algorithm. This strict verification
/// performs the recommended check of 5.1.7 §3, on top of the required
/// RFC8032 verifications.
fn verify<T: CryptoHash + Serialize>(
&self, message: &T, public_key: &Ed25519PublicKey,
) -> Result<()> {
// Public keys should be validated to be safe against small subgroup
// attacks, etc.
precondition!(has_tag!(public_key, ValidatedPublicKeyTag));
let mut bytes = <T::Hasher as CryptoHasher>::seed().to_vec();
bcs::serialize_into(&mut bytes, &message)
.map_err(|_| CryptoMaterialError::SerializationError)?;
Self::verify_arbitrary_msg(self, &bytes, public_key)
}
/// Checks that `self` is valid for an arbitrary &[u8] `message` using
/// `public_key`. Outside of this crate, this particular function should
/// only be used for native signature verification in move
fn verify_arbitrary_msg(
&self, message: &[u8], public_key: &Ed25519PublicKey,
) -> Result<()> {
// Public keys should be validated to be safe against small subgroup
// attacks, etc.
precondition!(has_tag!(public_key, ValidatedPublicKeyTag));
Ed25519Signature::check_malleability(&self.to_bytes())?;
public_key
.0
.verify_strict(message, &self.0)
.map_err(|e| anyhow!("{}", e))
.and(Ok(()))
}
/// Batch signature verification as described in the original EdDSA article
/// by Bernstein et al. "High-speed high-security signatures". Current
/// implementation works for signatures on the same message and it
/// checks for malleability.
#[cfg(feature = "batch")]
fn batch_verify<T: CryptoHash + Serialize>(
message: &T,
keys_and_signatures: Vec<(Self::VerifyingKeyMaterial, Self)>,
) -> Result<()> {
for (_, sig) in keys_and_signatures.iter() {
Ed25519Signature::check_malleability(&sig.to_bytes())?
}
let mut message_bytes = <T::Hasher as CryptoHasher>::seed().to_vec();
bcs::serialize_into(&mut message_bytes, &message)
.map_err(|_| CryptoMaterialError::SerializationError)?;
let batch_argument = keys_and_signatures
.iter()
.map(|(key, signature)| (key.0, signature.0));
let (dalek_public_keys, dalek_signatures): (Vec<_>, Vec<_>) =
batch_argument.unzip();
let message_ref = &(&message_bytes)[..];
// The original batching algorithm works for different messages and it
// expects as many messages as the number of signatures. In our
// case, we just populate the same message to meet dalek's api
// requirements.
let messages = vec![message_ref; dalek_signatures.len()];
ed25519_dalek::verify_batch(
&messages[..],
&dalek_signatures[..],
&dalek_public_keys[..],
)
.map_err(|e| anyhow!("{}", e))?;
Ok(())
}
}
impl Length for Ed25519Signature {
fn length(&self) -> usize { ED25519_SIGNATURE_LENGTH }
}
impl ValidCryptoMaterial for Ed25519Signature {
fn to_bytes(&self) -> Vec<u8> { self.to_bytes().to_vec() }
}
impl std::hash::Hash for Ed25519Signature {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
let encoded_signature = self.to_bytes();
state.write(&encoded_signature);
}
}
impl TryFrom<&[u8]> for Ed25519Signature {
type Error = CryptoMaterialError;
fn try_from(
bytes: &[u8],
) -> std::result::Result<Ed25519Signature, CryptoMaterialError> {
Ed25519Signature::check_malleability(bytes)?;
Ed25519Signature::from_bytes_unchecked(bytes)
}
}
// Those are required by the implementation of hash above
impl PartialEq for Ed25519Signature {
fn eq(&self, other: &Ed25519Signature) -> bool {
self.to_bytes()[..] == other.to_bytes()[..]
}
}
impl Eq for Ed25519Signature {}
impl fmt::Display for Ed25519Signature {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", hex::encode(&self.0.to_bytes()[..]))
}
}
impl fmt::Debug for Ed25519Signature {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Ed25519Signature({})", self)
}
}
/// Check if S < L to capture invalid signatures.
fn check_s_lt_l(s: &[u8]) -> bool {
for i in (0..32).rev() {
match s[i].cmp(&L[i]) {
Ordering::Less => return true,
Ordering::Greater => return false,
_ => {}
}
}
// As this stage S == L which implies a non canonical S.
false
}
#[cfg(any(test, feature = "fuzzing"))]
use crate::test_utils::{self, KeyPair};
/// Produces a uniformly random ed25519 keypair from a seed
#[cfg(any(test, feature = "fuzzing"))]
pub fn keypair_strategy(
) -> impl Strategy<Value = KeyPair<Ed25519PrivateKey, Ed25519PublicKey>> {
test_utils::uniform_keypair_strategy::<Ed25519PrivateKey, Ed25519PublicKey>(
)
}
#[cfg(any(test, feature = "fuzzing"))]
use proptest::prelude::*;
#[cfg(any(test, feature = "fuzzing"))]
impl proptest::arbitrary::Arbitrary for Ed25519PublicKey {
type Parameters = ();
type Strategy = BoxedStrategy<Self>;
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
crate::test_utils::uniform_keypair_strategy::<
Ed25519PrivateKey,
Ed25519PublicKey,
>()
.prop_map(|v| v.public_key)
.boxed()
}
}