1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0

// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/

//! diem_channel provides an mpsc channel which has two ends
//! `diem_channel::Receiver` and `diem_channel::Sender` similar to existing mpsc
//! data structures. What makes it different from existing mpsc channels is that
//! we have full control over how the internal queueing in the channel happens
//! and how we schedule messages to be sent out from this channel.
//! Internally, it uses the `PerKeyQueue` to store messages
use crate::message_queues::{PerKeyQueue, QueueStyle};
use anyhow::{ensure, Result};
use diem_infallible::{Mutex, NonZeroUsize};
use diem_metrics::IntCounterVec;
use futures::{
    channel::oneshot,
    stream::{FusedStream, Stream},
};
use std::{
    fmt::{Debug, Formatter},
    hash::Hash,
    pin::Pin,
    sync::Arc,
    task::{Context, Poll, Waker},
};

/// SharedState is a data structure private to this module which is
/// shared by the `Receiver` and any `Sender`s.
#[derive(Debug)]
struct SharedState<K: Eq + Hash + Clone, M> {
    /// The internal queue of messages in this channel.
    internal_queue:
        PerKeyQueue<K, (M, Option<oneshot::Sender<ElementStatus<M>>>)>,
    /// The `Receiver` registers its `Waker` in this slot when the queue is
    /// empty. `Sender`s will try to wake the `Receiver` (if any) when they
    /// push a new item onto the queue. The last live `Sender` will also
    /// wake the `Receiver` as it's tearing down so the `Receiver` can
    /// gracefully drain and shutdown the channel.
    waker: Option<Waker>,
    /// The number of active senders. When this value reaches 0, all senders
    /// have been dropped.
    num_senders: usize,
    /// A boolean which tracks whether the receiver has dropped.
    receiver_dropped: bool,
    /// A boolean which tracks whether the stream has terminated. A stream is
    /// considered terminated when sender has dropped and we have drained
    /// everything inside our internal queue.
    stream_terminated: bool,
}

/// The sending end of the diem_channel.
#[derive(Debug)]
pub struct Sender<K: Eq + Hash + Clone, M> {
    shared_state: Arc<Mutex<SharedState<K, M>>>,
}

/// The status of an element inserted into a diem_channel. If the element is
/// successfully dequeued, ElementStatus::Dequeued is sent to the sender. If it
/// is dropped ElementStatus::Dropped is sent to the sender along with the
/// dropped element.
pub enum ElementStatus<M> {
    Dequeued,
    Dropped(M),
}

impl<M: PartialEq> PartialEq for ElementStatus<M> {
    fn eq(&self, other: &ElementStatus<M>) -> bool {
        match (self, other) {
            (ElementStatus::Dequeued, ElementStatus::Dequeued) => true,
            (ElementStatus::Dropped(a), ElementStatus::Dropped(b)) => a.eq(b),
            _ => false,
        }
    }
}

impl<M: Debug> Debug for ElementStatus<M> {
    fn fmt(
        &self, f: &mut Formatter,
    ) -> std::result::Result<(), std::fmt::Error> {
        match self {
            ElementStatus::Dequeued => write!(f, "Dequeued"),
            ElementStatus::Dropped(v) => write!(f, "Dropped({:?})", v),
        }
    }
}

impl<K: Eq + Hash + Clone, M> Sender<K, M> {
    /// This adds the message into the internal queue data structure. This is a
    /// synchronous call.
    pub fn push(&self, key: K, message: M) -> Result<()> {
        self.push_with_feedback(key, message, None)
    }

    /// Same as `push`, but this function also accepts a oneshot::Sender over
    /// which the sender can be notified when the message eventually gets
    /// delivered or dropped.
    pub fn push_with_feedback(
        &self, key: K, message: M,
        status_ch: Option<oneshot::Sender<ElementStatus<M>>>,
    ) -> Result<()> {
        let mut shared_state = self.shared_state.lock();
        ensure!(!shared_state.receiver_dropped, "Channel is closed");
        debug_assert!(shared_state.num_senders > 0);

        let dropped =
            shared_state.internal_queue.push(key, (message, status_ch));
        // If this or an existing message had to be dropped because of the queue
        // being full, we notify the corresponding status channel if it
        // was registered.
        if let Some((dropped_val, Some(dropped_status_ch))) = dropped {
            // Ignore errors.
            let _err =
                dropped_status_ch.send(ElementStatus::Dropped(dropped_val));
        }
        if let Some(w) = shared_state.waker.take() {
            w.wake();
        }
        Ok(())
    }
}

impl<K: Eq + Hash + Clone, M> Clone for Sender<K, M> {
    fn clone(&self) -> Self {
        let shared_state = self.shared_state.clone();
        {
            let mut shared_state_lock = shared_state.lock();
            debug_assert!(shared_state_lock.num_senders > 0);
            shared_state_lock.num_senders += 1;
        }
        Sender { shared_state }
    }
}

impl<K: Eq + Hash + Clone, M> Drop for Sender<K, M> {
    fn drop(&mut self) {
        let mut shared_state = self.shared_state.lock();

        debug_assert!(shared_state.num_senders > 0);
        shared_state.num_senders -= 1;

        if shared_state.num_senders == 0 {
            if let Some(waker) = shared_state.waker.take() {
                waker.wake();
            }
        }
    }
}

/// The receiving end of the diem_channel.
pub struct Receiver<K: Eq + Hash + Clone, M> {
    shared_state: Arc<Mutex<SharedState<K, M>>>,
}

impl<K: Eq + Hash + Clone, M> Receiver<K, M> {
    /// Removes all the previously sent transactions that have not been consumed
    /// yet and cleans up the internal queue structure (GC of the previous
    /// keys).
    pub fn clear(&mut self) {
        let mut shared_state = self.shared_state.lock();
        shared_state.internal_queue.clear();
    }
}

impl<K: Eq + Hash + Clone, M> Drop for Receiver<K, M> {
    fn drop(&mut self) {
        let mut shared_state = self.shared_state.lock();
        debug_assert!(!shared_state.receiver_dropped);
        shared_state.receiver_dropped = true;
    }
}

impl<K: Eq + Hash + Clone, M> Stream for Receiver<K, M> {
    type Item = M;

    /// poll_next checks whether there is something ready for consumption from
    /// the internal queue. If there is, then it returns immediately. If the
    /// internal_queue is empty, it sets the waker passed to it by the
    /// scheduler/executor and returns Pending
    fn poll_next(
        self: Pin<&mut Self>, cx: &mut Context<'_>,
    ) -> Poll<Option<Self::Item>> {
        let mut shared_state = self.shared_state.lock();
        if let Some((val, status_ch)) = shared_state.internal_queue.pop() {
            if let Some(status_ch) = status_ch {
                let _err = status_ch.send(ElementStatus::Dequeued);
            }
            Poll::Ready(Some(val))
        // all senders have been dropped (and so the stream is terminated)
        } else if shared_state.num_senders == 0 {
            shared_state.stream_terminated = true;
            Poll::Ready(None)
        } else {
            shared_state.waker = Some(cx.waker().clone());
            Poll::Pending
        }
    }
}

impl<K: Eq + Hash + Clone, M> FusedStream for Receiver<K, M> {
    fn is_terminated(&self) -> bool {
        self.shared_state.lock().stream_terminated
    }
}

/// Create a new Diem Channel and returns the two ends of the channel.
pub fn new<K: Eq + Hash + Clone, M>(
    queue_style: QueueStyle, max_queue_size_per_key: usize,
    counters: Option<&'static IntCounterVec>,
) -> (Sender<K, M>, Receiver<K, M>) {
    let max_queue_size_per_key = NonZeroUsize!(
        max_queue_size_per_key,
        "diem_channel cannot be of size 0"
    );
    let shared_state = Arc::new(Mutex::new(SharedState {
        internal_queue: PerKeyQueue::new(
            queue_style,
            max_queue_size_per_key,
            counters,
        ),
        waker: None,
        num_senders: 1,
        receiver_dropped: false,
        stream_terminated: false,
    }));
    let shared_state_clone = Arc::clone(&shared_state);
    (
        Sender { shared_state },
        Receiver {
            shared_state: shared_state_clone,
        },
    )
}