1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.

// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Parity Ethereum.  If not, see <http://www.gnu.org/licenses/>.

use crate::{
    account::{Aes128Ctr, Cipher, Kdf, Pbkdf2, Prf},
    crypto::{self, Keccak256},
    json,
    random::Random,
    Error,
};
use cfxkey::{Password, Secret};
use smallvec::SmallVec;
use std::str;

/// Encrypted data
#[derive(Debug, PartialEq, Clone)]
pub struct Crypto {
    /// Encryption parameters
    pub cipher: Cipher,
    /// Encrypted data buffer
    pub ciphertext: Vec<u8>,
    /// Key derivation function parameters
    pub kdf: Kdf,
    /// Message authentication code
    pub mac: [u8; 32],
}

impl From<json::Crypto> for Crypto {
    fn from(json: json::Crypto) -> Self {
        Crypto {
            cipher: json.cipher.into(),
            ciphertext: json.ciphertext.into(),
            kdf: json.kdf.into(),
            mac: json.mac.into(),
        }
    }
}

impl From<Crypto> for json::Crypto {
    fn from(c: Crypto) -> Self {
        json::Crypto {
            cipher: c.cipher.into(),
            ciphertext: c.ciphertext.into(),
            kdf: c.kdf.into(),
            mac: c.mac.into(),
        }
    }
}

impl str::FromStr for Crypto {
    type Err = <json::Crypto as str::FromStr>::Err;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        s.parse::<json::Crypto>().map(Into::into)
    }
}

impl From<Crypto> for String {
    fn from(c: Crypto) -> Self { json::Crypto::from(c).into() }
}

impl Crypto {
    /// Encrypt account secret
    pub fn with_secret(
        secret: &Secret, password: &Password, iterations: u32,
    ) -> Result<Self, crypto::Error> {
        Crypto::with_plain(secret.as_ref(), password, iterations)
    }

    /// Encrypt custom plain data
    pub fn with_plain(
        plain: &[u8], password: &Password, iterations: u32,
    ) -> Result<Self, crypto::Error> {
        let salt: [u8; 32] = Random::random();
        let iv: [u8; 16] = Random::random();

        // two parts of derived key
        // DK = [ DK[0..15] DK[16..31] ] = [derived_left_bits,
        // derived_right_bits]
        let (derived_left_bits, derived_right_bits) =
            crypto::derive_key_iterations(
                password.as_bytes(),
                &salt,
                iterations,
            );

        // preallocated (on-stack in case of `Secret`) buffer to hold cipher
        // length = length(plain) as we are using CTR-approach
        let plain_len = plain.len();
        let mut ciphertext: SmallVec<[u8; 32]> =
            SmallVec::from_vec(vec![0; plain_len]);

        // aes-128-ctr with initial vector of iv
        crypto::aes::encrypt_128_ctr(
            &derived_left_bits,
            &iv,
            plain,
            &mut *ciphertext,
        )?;

        // KECCAK(DK[16..31] ++ <ciphertext>), where DK[16..31] -
        // derived_right_bits
        let mac =
            crypto::derive_mac(&derived_right_bits, &*ciphertext).keccak256();

        Ok(Crypto {
            cipher: Cipher::Aes128Ctr(Aes128Ctr { iv }),
            ciphertext: ciphertext.into_vec(),
            kdf: Kdf::Pbkdf2(Pbkdf2 {
                dklen: crypto::KEY_LENGTH as u32,
                salt: salt.to_vec(),
                c: iterations,
                prf: Prf::HmacSha256,
            }),
            mac,
        })
    }

    /// Try to decrypt and convert result to account secret
    pub fn secret(&self, password: &Password) -> Result<Secret, Error> {
        if self.ciphertext.len() > 32 {
            return Err(Error::InvalidSecret);
        }

        let secret = self.do_decrypt(password, 32)?;
        Ok(Secret::from_unsafe_slice(&secret)?)
    }

    /// Try to decrypt and return result as is
    pub fn decrypt(&self, password: &Password) -> Result<Vec<u8>, Error> {
        let expected_len = self.ciphertext.len();
        self.do_decrypt(password, expected_len)
    }

    fn do_decrypt(
        &self, password: &Password, expected_len: usize,
    ) -> Result<Vec<u8>, Error> {
        let (derived_left_bits, derived_right_bits) = match self.kdf {
            Kdf::Pbkdf2(ref params) => crypto::derive_key_iterations(
                password.as_bytes(),
                &params.salt,
                params.c,
            ),
            Kdf::Scrypt(ref params) => crypto::scrypt::derive_key(
                password.as_bytes(),
                &params.salt,
                params.n,
                params.p,
                params.r,
            )?,
        };

        let mac = crypto::derive_mac(&derived_right_bits, &self.ciphertext)
            .keccak256();

        if !crypto::is_equal(&mac, &self.mac) {
            return Err(Error::InvalidPassword);
        }

        let mut plain: SmallVec<[u8; 32]> =
            SmallVec::from_vec(vec![0; expected_len]);

        match self.cipher {
            Cipher::Aes128Ctr(ref params) => {
                // checker by callers
                debug_assert!(expected_len >= self.ciphertext.len());

                let from = expected_len - self.ciphertext.len();
                crypto::aes::decrypt_128_ctr(
                    &derived_left_bits,
                    &params.iv,
                    &self.ciphertext,
                    &mut plain[from..],
                )?;
                Ok(plain.into_iter().collect())
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::{Crypto, Error};
    use cfxkey::{Generator, Random};
    use matches::assert_matches;

    #[test]
    fn crypto_with_secret_create() {
        let keypair = Random.generate().unwrap();
        let passwd = "this is sparta".into();
        let crypto =
            Crypto::with_secret(keypair.secret(), &passwd, 10240).unwrap();
        let secret = crypto.secret(&passwd).unwrap();
        assert_eq!(keypair.secret(), &secret);
    }

    #[test]
    fn crypto_with_secret_invalid_password() {
        let keypair = Random.generate().unwrap();
        let crypto = Crypto::with_secret(
            keypair.secret(),
            &"this is sparta".into(),
            10240,
        )
        .unwrap();
        assert_matches!(
            crypto.secret(&"this is sparta!".into()),
            Err(Error::InvalidPassword)
        )
    }

    #[test]
    fn crypto_with_null_plain_data() {
        let original_data = b"";
        let passwd = "this is sparta".into();
        let crypto =
            Crypto::with_plain(&original_data[..], &passwd, 10240).unwrap();
        let decrypted_data = crypto.decrypt(&passwd).unwrap();
        assert_eq!(original_data[..], *decrypted_data);
    }

    #[test]
    fn crypto_with_tiny_plain_data() {
        let original_data = b"{}";
        let passwd = "this is sparta".into();
        let crypto =
            Crypto::with_plain(&original_data[..], &passwd, 10240).unwrap();
        let decrypted_data = crypto.decrypt(&passwd).unwrap();
        assert_eq!(original_data[..], *decrypted_data);
    }

    #[test]
    fn crypto_with_huge_plain_data() {
        let original_data: Vec<_> =
            (1..65536).map(|i| (i % 256) as u8).collect();
        let passwd = "this is sparta".into();
        let crypto =
            Crypto::with_plain(&original_data, &passwd, 10240).unwrap();
        let decrypted_data = crypto.decrypt(&passwd).unwrap();
        assert_eq!(&original_data, &decrypted_data);
    }
}