1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.

// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Parity Ethereum.  If not, see <http://www.gnu.org/licenses/>.

use crate::{Error, SECP256K1};
use cfx_types::H256;
use malloc_size_of_derive::MallocSizeOf as DeriveMallocSizeOf;
use secp256k1::{constants::SECRET_KEY_SIZE as SECP256K1_SECRET_KEY_SIZE, key};
use std::{fmt, ops::Deref, str::FromStr};
use zeroize::Zeroize;

#[derive(Clone, PartialEq, Eq, DeriveMallocSizeOf)]
pub struct Secret {
    inner: H256,
}

impl Drop for Secret {
    fn drop(&mut self) { self.inner.0.zeroize() }
}

impl fmt::LowerHex for Secret {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        self.inner.fmt(fmt)
    }
}

impl fmt::Debug for Secret {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        self.inner.fmt(fmt)
    }
}

impl fmt::Display for Secret {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(
            fmt,
            "Secret: 0x{:x}{:x}..{:x}{:x}",
            self.inner[0], self.inner[1], self.inner[30], self.inner[31]
        )
    }
}

impl Secret {
    /// Creates a `Secret` from the given slice, returning `None` if the slice
    /// length != 32.
    pub fn from_slice(key: &[u8]) -> Option<Self> {
        if key.len() != 32 {
            return None;
        }
        let mut h = H256::zero();
        h.as_bytes_mut().copy_from_slice(&key[0..32]);
        Some(Secret { inner: h })
    }

    /// Creates zero key, which is invalid for crypto operations, but valid for
    /// math operation.
    pub fn zero() -> Self {
        Secret {
            inner: H256::zero(),
        }
    }

    /// Imports and validates the key.
    pub fn from_unsafe_slice(key: &[u8]) -> Result<Self, Error> {
        let secret = key::SecretKey::from_slice(&super::SECP256K1, key)?;
        Ok(secret.into())
    }

    /// Checks validity of this key.
    pub fn check_validity(&self) -> Result<(), Error> {
        self.to_secp256k1_secret().map(|_| ())
    }

    /// Inplace add one secret key to another (scalar + scalar)
    pub fn add(&mut self, other: &Secret) -> Result<(), Error> {
        match (self.is_zero(), other.is_zero()) {
            (true, true) | (false, true) => Ok(()),
            (true, false) => {
                *self = other.clone();
                Ok(())
            }
            (false, false) => {
                let mut key_secret = self.to_secp256k1_secret()?;
                let other_secret = other.to_secp256k1_secret()?;
                key_secret.add_assign(&SECP256K1, &other_secret)?;

                *self = key_secret.into();
                Ok(())
            }
        }
    }

    /// Inplace subtract one secret key from another (scalar - scalar)
    pub fn sub(&mut self, other: &Secret) -> Result<(), Error> {
        match (self.is_zero(), other.is_zero()) {
            (true, true) | (false, true) => Ok(()),
            (true, false) => {
                *self = other.clone();
                self.neg()
            }
            (false, false) => {
                let mut key_secret = self.to_secp256k1_secret()?;
                let mut other_secret = other.to_secp256k1_secret()?;
                other_secret.mul_assign(&SECP256K1, &key::MINUS_ONE_KEY)?;
                key_secret.add_assign(&SECP256K1, &other_secret)?;

                *self = key_secret.into();
                Ok(())
            }
        }
    }

    /// Inplace decrease secret key (scalar - 1)
    pub fn dec(&mut self) -> Result<(), Error> {
        match self.is_zero() {
            true => {
                *self = key::MINUS_ONE_KEY.into();
                Ok(())
            }
            false => {
                let mut key_secret = self.to_secp256k1_secret()?;
                key_secret.add_assign(&SECP256K1, &key::MINUS_ONE_KEY)?;

                *self = key_secret.into();
                Ok(())
            }
        }
    }

    /// Inplace multiply one secret key to another (scalar * scalar)
    pub fn mul(&mut self, other: &Secret) -> Result<(), Error> {
        match (self.is_zero(), other.is_zero()) {
            (true, true) | (true, false) => Ok(()),
            (false, true) => {
                *self = Self::zero();
                Ok(())
            }
            (false, false) => {
                let mut key_secret = self.to_secp256k1_secret()?;
                let other_secret = other.to_secp256k1_secret()?;
                key_secret.mul_assign(&SECP256K1, &other_secret)?;

                *self = key_secret.into();
                Ok(())
            }
        }
    }

    /// Inplace negate secret key (-scalar)
    pub fn neg(&mut self) -> Result<(), Error> {
        match self.is_zero() {
            true => Ok(()),
            false => {
                let mut key_secret = self.to_secp256k1_secret()?;
                key_secret.mul_assign(&SECP256K1, &key::MINUS_ONE_KEY)?;

                *self = key_secret.into();
                Ok(())
            }
        }
    }

    /// Inplace inverse secret key (1 / scalar)
    pub fn inv(&mut self) -> Result<(), Error> {
        let mut key_secret = self.to_secp256k1_secret()?;
        key_secret.inv_assign(&SECP256K1)?;

        *self = key_secret.into();
        Ok(())
    }

    /// Compute power of secret key inplace (secret ^ pow).
    /// This function is not intended to be used with large powers.
    pub fn pow(&mut self, pow: usize) -> Result<(), Error> {
        if self.is_zero() {
            return Ok(());
        }

        match pow {
            0 => *self = key::ONE_KEY.into(),
            1 => (),
            _ => {
                let c = self.clone();
                for _ in 1..pow {
                    self.mul(&c)?;
                }
            }
        }

        Ok(())
    }

    /// Create `secp256k1::key::SecretKey` based on this secret
    pub fn to_secp256k1_secret(&self) -> Result<key::SecretKey, Error> {
        Ok(key::SecretKey::from_slice(&SECP256K1, &self[..])?)
    }

    pub fn to_hex(&self) -> String { format!("{:x}", self.inner) }
}

impl FromStr for Secret {
    type Err = Error;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Ok(H256::from_str(s)
            .map_err(|e| Error::Custom(format!("{:?}", e)))?
            .into())
    }
}

impl From<[u8; 32]> for Secret {
    fn from(k: [u8; 32]) -> Self { Secret { inner: H256(k) } }
}

impl From<H256> for Secret {
    fn from(s: H256) -> Self { s.0.into() }
}

impl From<&'static str> for Secret {
    fn from(s: &'static str) -> Self {
        s.parse().unwrap_or_else(|_| {
            panic!("invalid string literal for {}: '{}'", stringify!(Self), s)
        })
    }
}

impl From<key::SecretKey> for Secret {
    fn from(key: key::SecretKey) -> Self {
        let mut a = [0; SECP256K1_SECRET_KEY_SIZE];
        a.copy_from_slice(&key[0..SECP256K1_SECRET_KEY_SIZE]);
        a.into()
    }
}

impl Deref for Secret {
    type Target = H256;

    fn deref(&self) -> &Self::Target { &self.inner }
}

#[cfg(test)]
mod tests {
    use super::{
        super::{KeyPairGenerator, Random},
        Secret,
    };
    use std::str::FromStr;

    #[test]
    fn multiplicating_secret_inversion_with_secret_gives_one() {
        let secret = Random.generate().unwrap().secret().clone();
        let mut inversion = secret.clone();
        inversion.inv().unwrap();
        inversion.mul(&secret).unwrap();
        assert_eq!(inversion, Secret::from_str("0000000000000000000000000000000000000000000000000000000000000001").unwrap());
    }

    #[test]
    fn secret_inversion_is_reversible_with_inversion() {
        let secret = Random.generate().unwrap().secret().clone();
        let mut inversion = secret.clone();
        inversion.inv().unwrap();
        inversion.inv().unwrap();
        assert_eq!(inversion, secret);
    }

    #[test]
    fn secret_pow() {
        let secret = Random.generate().unwrap().secret().clone();

        let mut pow0 = secret.clone();
        pow0.pow(0).unwrap();
        assert_eq!(pow0, Secret::from_str("0000000000000000000000000000000000000000000000000000000000000001").unwrap());

        let mut pow1 = secret.clone();
        pow1.pow(1).unwrap();
        assert_eq!(pow1, secret);

        let mut pow2 = secret.clone();
        pow2.pow(2).unwrap();
        let mut pow2_expected = secret.clone();
        pow2_expected.mul(&secret).unwrap();
        assert_eq!(pow2, pow2_expected);

        let mut pow3 = secret.clone();
        pow3.pow(3).unwrap();
        let mut pow3_expected = secret.clone();
        pow3_expected.mul(&secret).unwrap();
        pow3_expected.mul(&secret).unwrap();
        assert_eq!(pow3, pow3_expected);
    }

    #[test]
    fn secret_sub_and_add() {
        let secret = Random.generate().unwrap().secret().clone();
        let secret_one = Secret::from_str(
            "0000000000000000000000000000000000000000000000000000000000000001",
        )
        .unwrap();

        let mut sub1 = secret.clone();
        sub1.sub(&secret_one).unwrap();

        let mut dec1 = secret.clone();
        dec1.dec().unwrap();

        assert_eq!(sub1, dec1);

        let mut add1 = sub1.clone();
        add1.add(&secret_one).unwrap();
        assert_eq!(add1, secret);
    }

    #[test]
    fn secret_neg() {
        let secret_one = Secret::from_str(
            "0000000000000000000000000000000000000000000000000000000000000001",
        )
        .unwrap();
        let minus_one = Secret::from(secp256k1::key::MINUS_ONE_KEY);

        let mut inv1 = secret_one.clone();
        inv1.neg().unwrap();
        assert_eq!(inv1, minus_one);
    }
}