1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.

// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Parity Ethereum.  If not, see <http://www.gnu.org/licenses/>.

use log::{info, trace};
use std::collections::HashSet;

use edit_distance::edit_distance;
use parity_wordlist;

use super::{Address, Brain, KeyPairGenerator};

/// Tries to find a phrase for address, given the number
/// of expected words and a partial phrase.
///
/// Returns `None` if phrase couldn't be found.
pub fn brain_recover(
    address: &Address, known_phrase: &str, expected_words: usize,
) -> Option<String> {
    let it = PhrasesIterator::from_known_phrase(known_phrase, expected_words);
    for phrase in it {
        let keypair = Brain::new(phrase.clone())
            .generate()
            .expect("Brain wallets are infallible; qed");
        trace!("Testing: {}, got: {:?}", phrase, keypair.address());
        if &keypair.address() == address {
            return Some(phrase);
        }
    }

    None
}

fn generate_substitutions(word: &str) -> Vec<&'static str> {
    let mut words = parity_wordlist::WORDS
        .iter()
        .cloned()
        .map(|w| (edit_distance(w, word), w))
        .collect::<Vec<_>>();
    words.sort_by(|a, b| a.0.cmp(&b.0));

    words.into_iter().map(|pair| pair.1).collect()
}

/// Iterator over possible
pub struct PhrasesIterator {
    words: Vec<Vec<&'static str>>,
    combinations: u64,
    indexes: Vec<usize>,
    has_next: bool,
}

impl PhrasesIterator {
    pub fn from_known_phrase(
        known_phrase: &str, expected_words: usize,
    ) -> Self {
        let known_words = parity_wordlist::WORDS
            .iter()
            .cloned()
            .collect::<HashSet<_>>();
        let mut words = known_phrase.split(' ')
			.map(|word| match known_words.get(word) {
				None => {
					info!("Invalid word '{}', looking for potential substitutions.", word);
					let substitutions = generate_substitutions(word);
					info!("Closest words: {:?}", &substitutions[..10]);
					substitutions
				},
				Some(word) => vec![*word],
			})
		.collect::<Vec<_>>();

        // add missing words
        if words.len() < expected_words {
            let to_add = expected_words - words.len();
            info!("Number of words is insuficcient adding {} more.", to_add);
            for _ in 0..to_add {
                words.push(parity_wordlist::WORDS.to_vec());
            }
        }

        // start searching
        PhrasesIterator::new(words)
    }

    pub fn new(words: Vec<Vec<&'static str>>) -> Self {
        let combinations =
            words.iter().fold(1u64, |acc, x| acc * x.len() as u64);
        let indexes = words.iter().map(|_| 0).collect();
        info!("Starting to test {} possible combinations.", combinations);

        PhrasesIterator {
            words,
            combinations,
            indexes,
            has_next: combinations > 0,
        }
    }

    pub fn combinations(&self) -> u64 { self.combinations }

    fn current(&self) -> String {
        let mut s = self.words[0][self.indexes[0]].to_owned();
        for i in 1..self.indexes.len() {
            s.push(' ');
            s.push_str(self.words[i][self.indexes[i]]);
        }
        s
    }

    fn next_index(&mut self) -> bool {
        let mut pos = self.indexes.len();
        while pos > 0 {
            pos -= 1;
            self.indexes[pos] += 1;
            if self.indexes[pos] >= self.words[pos].len() {
                self.indexes[pos] = 0;
            } else {
                return true;
            }
        }

        false
    }
}

impl Iterator for PhrasesIterator {
    type Item = String;

    fn next(&mut self) -> Option<String> {
        if !self.has_next {
            return None;
        }

        let phrase = self.current();
        self.has_next = self.next_index();
        Some(phrase)
    }
}

#[cfg(test)]
mod tests {
    use super::PhrasesIterator;

    #[test]
    fn should_generate_possible_combinations() {
        let mut it = PhrasesIterator::new(vec![
            vec!["1", "2", "3"],
            vec!["test"],
            vec!["a", "b", "c"],
        ]);

        assert_eq!(it.combinations(), 9);
        assert_eq!(it.next(), Some("1 test a".to_owned()));
        assert_eq!(it.next(), Some("1 test b".to_owned()));
        assert_eq!(it.next(), Some("1 test c".to_owned()));
        assert_eq!(it.next(), Some("2 test a".to_owned()));
        assert_eq!(it.next(), Some("2 test b".to_owned()));
        assert_eq!(it.next(), Some("2 test c".to_owned()));
        assert_eq!(it.next(), Some("3 test a".to_owned()));
        assert_eq!(it.next(), Some("3 test b".to_owned()));
        assert_eq!(it.next(), Some("3 test c".to_owned()));
        assert_eq!(it.next(), None);
    }
}