1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// Copyright 2015-2018 Parity Technologies (UK) Ltd.
// This file is part of Parity.

// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Parity.  If not, see <http://www.gnu.org/licenses/>.

// Copyright 2019 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/

use cfx_types::U256;
use cfx_vm_types::ReturnData;

const MAX_RETURN_WASTE_BYTES: usize = 16384;

pub trait Memory {
    /// Retrieve current size of the memory
    fn size(&self) -> usize;
    /// Resize (shrink or expand) the memory to specified size (fills 0)
    fn resize(&mut self, new_size: usize);
    /// Resize the memory only if its smaller
    fn expand(&mut self, new_size: usize);
    /// Write single byte to memory
    fn write_byte(&mut self, offset: U256, value: U256);
    /// Write a word to memory. Does not resize memory!
    fn write(&mut self, offset: U256, value: U256);
    /// Read a word from memory
    fn read(&self, offset: U256) -> U256;
    /// Write slice of bytes to memory. Does not resize memory!
    fn write_slice(&mut self, offset: U256, _: &[u8]);
    /// Retrieve part of the memory between offset and offset + size
    fn read_slice(&self, offset: U256, size: U256) -> &[u8];
    /// Retrieve writeable part of memory
    fn writeable_slice(&mut self, offset: U256, size: U256) -> &mut [u8];
    /// Convert memory into return data.
    fn into_return_data(self, offset: U256, size: U256) -> ReturnData;
}

/// Checks whether offset and size is valid memory range
pub fn is_valid_range(off: usize, size: usize) -> bool {
    // When size is zero we haven't actually expanded the memory
    let overflow = off.overflowing_add(size).1;
    size > 0 && !overflow
}

impl Memory for Vec<u8> {
    fn size(&self) -> usize { self.len() }

    fn read_slice(&self, init_off_u: U256, init_size_u: U256) -> &[u8] {
        let off = init_off_u.low_u64() as usize;
        let size = init_size_u.low_u64() as usize;
        if !is_valid_range(off, size) {
            &[]
        } else {
            &self[off..off + size]
        }
    }

    fn read(&self, offset: U256) -> U256 {
        let off = offset.low_u64() as usize;
        U256::from(&self[off..off + 32])
    }

    fn writeable_slice(&mut self, offset: U256, size: U256) -> &mut [u8] {
        let off = offset.low_u64() as usize;
        let s = size.low_u64() as usize;
        if !is_valid_range(off, s) {
            &mut []
        } else {
            &mut self[off..off + s]
        }
    }

    fn write_slice(&mut self, offset: U256, slice: &[u8]) {
        if !slice.is_empty() {
            let off = offset.low_u64() as usize;
            self[off..off + slice.len()].copy_from_slice(slice);
        }
    }

    fn write(&mut self, offset: U256, value: U256) {
        let off = offset.low_u64() as usize;
        value.to_big_endian(&mut self[off..off + 32]);
    }

    fn write_byte(&mut self, offset: U256, value: U256) {
        let off = offset.low_u64() as usize;
        let val = value.low_u64() as u64;
        self[off] = val as u8;
    }

    fn resize(&mut self, new_size: usize) { self.resize(new_size, 0); }

    fn expand(&mut self, size: usize) {
        if size > self.len() {
            Memory::resize(self, size)
        }
    }

    fn into_return_data(mut self, offset: U256, size: U256) -> ReturnData {
        let mut offset = offset.low_u64() as usize;
        let size = size.low_u64() as usize;

        if !is_valid_range(offset, size) {
            return ReturnData::empty();
        }

        if self.len() - size > MAX_RETURN_WASTE_BYTES {
            if offset == 0 {
                self.truncate(size);
                self.shrink_to_fit();
            } else {
                self = self[offset..(offset + size)].to_vec();
                offset = 0;
            }
        }
        ReturnData::new(self, offset, size)
    }
}

#[cfg(test)]
mod tests {
    use super::Memory;
    use cfx_types::U256;

    #[test]
    fn test_memory_read_and_write() {
        // given
        let mem: &mut dyn Memory = &mut vec![];
        mem.resize(0x80 + 32);

        // when
        mem.write(U256::from(0x80), U256::from(0xabcdef));

        // then
        assert_eq!(mem.read(U256::from(0x80)), U256::from(0xabcdef));
    }

    #[test]
    fn test_memory_read_and_write_byte() {
        // given
        let mem: &mut dyn Memory = &mut vec![];
        mem.resize(32);

        // when
        mem.write_byte(U256::from(0x1d), U256::from(0xab));
        mem.write_byte(U256::from(0x1e), U256::from(0xcd));
        mem.write_byte(U256::from(0x1f), U256::from(0xef));

        // then
        assert_eq!(mem.read(U256::from(0x00)), U256::from(0xabcdef));
    }

    #[test]
    fn test_memory_read_slice_and_write_slice() {
        let mem: &mut dyn Memory = &mut vec![];
        mem.resize(32);

        {
            let slice = "abcdefghijklmnopqrstuvwxyz012345".as_bytes();
            mem.write_slice(U256::from(0), slice);

            assert_eq!(mem.read_slice(U256::from(0), U256::from(32)), slice);
        }

        // write again
        {
            let slice = "67890".as_bytes();
            mem.write_slice(U256::from(0x1), slice);

            assert_eq!(
                mem.read_slice(U256::from(0), U256::from(7)),
                "a67890g".as_bytes()
            );
        }

        // write empty slice out of bounds
        {
            let slice = [];
            mem.write_slice(U256::from(0x1000), &slice);
            assert_eq!(mem.size(), 32);
        }
    }
}