1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// Copyright 2015-2018 Parity Technologies (UK) Ltd.
// This file is part of Parity.

// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Parity.  If not, see <http://www.gnu.org/licenses/>.

// Copyright 2019 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/

//! Evm interface.
use cfx_types::{U128, U256, U512};
use cfx_vm_types::{Context, Error, GasLeft, Result, ReturnData};
use std::{cmp, fmt, ops};

/// Finalization result. Gas Left: either it is a known value, or it needs to
/// be computed by processing a return instruction.
#[derive(Debug)]
pub struct FinalizationResult {
    /// Final amount of gas left.
    pub gas_left: U256,
    /// Apply execution state changes or revert them.
    pub apply_state: bool,
    /// Return data buffer.
    pub return_data: ReturnData,
}

/// Types that can be "finalized" using an EVM.
///
/// In practice, this is just used to define an inherent impl on
/// `Reult<GasLeft<'a>>`.
pub trait Finalize {
    /// Consume the context, call return if necessary, and produce call
    /// result.
    fn finalize<C: Context>(self, context: C) -> Result<FinalizationResult>;
}

impl Finalize for Result<GasLeft> {
    fn finalize<C: Context>(self, context: C) -> Result<FinalizationResult> {
        match self {
            Ok(GasLeft::Known(gas_left)) => Ok(FinalizationResult {
                gas_left,
                apply_state: true,
                return_data: ReturnData::empty(),
            }),
            Ok(GasLeft::NeedsReturn {
                gas_left,
                data,
                apply_state,
            }) => context.ret(&gas_left, &data, apply_state).map(|gas_left| {
                FinalizationResult {
                    gas_left,
                    apply_state,
                    return_data: data,
                }
            }),
            Err(err) => Err(err),
        }
    }
}

impl Finalize for Error {
    fn finalize<C: Context>(self, _context: C) -> Result<FinalizationResult> {
        Err(self)
    }
}

/// Cost calculation type. For low-gas usage we calculate costs using usize
/// instead of U256
pub trait CostType:
    Sized
    + From<usize>
    + Copy
    + Send
    + ops::Mul<Output = Self>
    + ops::Div<Output = Self>
    + ops::Add<Output = Self>
    + ops::Sub<Output = Self>
    + ops::Shr<usize, Output = Self>
    + ops::Shl<usize, Output = Self>
    + cmp::Ord
    + fmt::Debug
{
    /// Converts this cost into `U256`
    fn as_u256(&self) -> U256;
    /// Tries to fit `U256` into this `Cost` type
    fn from_u256(val: U256) -> Result<Self>;
    /// Convert to usize (may panic)
    fn as_usize(&self) -> usize;
    /// Add with overflow
    fn overflow_add(self, other: Self) -> (Self, bool);
    /// Multiple with overflow
    fn overflow_mul(self, other: Self) -> (Self, bool);
    /// Single-step full multiplication and shift: `(self*other) >> shr`
    /// Should not overflow on intermediate steps
    fn overflow_mul_shr(self, other: Self, shr: usize) -> (Self, bool);
}

impl CostType for U256 {
    fn as_u256(&self) -> U256 { *self }

    fn from_u256(val: U256) -> Result<Self> { Ok(val) }

    fn as_usize(&self) -> usize { self.as_u64() as usize }

    fn overflow_add(self, other: Self) -> (Self, bool) {
        self.overflowing_add(other)
    }

    fn overflow_mul(self, other: Self) -> (Self, bool) {
        self.overflowing_mul(other)
    }

    fn overflow_mul_shr(self, other: Self, shr: usize) -> (Self, bool) {
        let x = self.full_mul(other);
        let U512(parts) = x;
        let overflow = (parts[4] | parts[5] | parts[6] | parts[7]) > 0;
        let U512(parts) = x >> shr;
        (U256([parts[0], parts[1], parts[2], parts[3]]), overflow)
    }
}

impl CostType for usize {
    fn as_u256(&self) -> U256 { U256::from(*self) }

    fn from_u256(val: U256) -> Result<Self> {
        let res = val.low_u64() as usize;

        // validate if value fits into usize
        if U256::from(res) != val {
            return Err(Error::OutOfGas);
        }

        Ok(res)
    }

    fn as_usize(&self) -> usize { *self }

    fn overflow_add(self, other: Self) -> (Self, bool) {
        self.overflowing_add(other)
    }

    fn overflow_mul(self, other: Self) -> (Self, bool) {
        self.overflowing_mul(other)
    }

    fn overflow_mul_shr(self, other: Self, shr: usize) -> (Self, bool) {
        let (c, o) = U128::from(self).overflowing_mul(U128::from(other));
        let U128(parts) = c;
        let overflow = o | (parts[1] > 0);
        let U128(parts) = c >> shr;
        let result = parts[0] as usize;
        let overflow = overflow | (parts[0] > result as u64);
        (result, overflow)
    }
}

#[cfg(test)]
mod tests {
    use super::CostType;
    use cfx_types::U256;

    #[test]
    fn should_calculate_overflow_mul_shr_without_overflow() {
        // given
        let num = 1048576;

        // when
        let (res1, o1) = U256::from(num).overflow_mul_shr(U256::from(num), 20);
        let (res2, o2) = num.overflow_mul_shr(num, 20);

        // then
        assert_eq!(res1, U256::from(num));
        assert!(!o1);
        assert_eq!(res2, num);
        assert!(!o2);
    }

    #[test]
    fn should_calculate_overflow_mul_shr_with_overflow() {
        // given
        let max = u64::max_value();
        let num1 = U256([max, max, max, max]);
        let num2 = usize::max_value();

        // when
        let (res1, o1) = num1.overflow_mul_shr(num1, 256);
        let (res2, o2) = num2.overflow_mul_shr(num2, 64);

        // then
        assert_eq!(res2, num2 - 1);
        assert!(o2);

        assert_eq!(res1, !U256::zero() - U256::one());
        assert!(o1);
    }

    #[test]
    fn should_validate_u256_to_usize_conversion() {
        // given
        let v = U256::from(usize::max_value()) + U256::from(1);

        // when
        let res = usize::from_u256(v);

        // then
        assert!(res.is_err());
    }
}