1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
// Copyright 2019 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/
use super::{
super::super::utils::access_mode, compressed_path::*,
trie_node::TrieNodeTrait,
};
use std::cmp::min;
/// Key length should be multiple of 8.
// TODO(yz): align key @8B with mask.
pub type KeyPart<'a> = &'a [u8];
pub enum WalkStop<'key, ChildIdType> {
// Path matching fails on the compressed path.
//
// if put, a new node should be created to replace the current node from
// parent children table; modify this node or create a new node to
// insert as children of new node, (update path) then the child that
// should be followed is nil at the new node.
//
// if get / delete (not found)
PathDiverted {
/// Key may terminate on the path.
key_child_index: Option<u8>,
key_remaining: CompressedPathRef<'key>,
matched_path: CompressedPathRaw,
unmatched_child_index: u8,
unmatched_path_remaining: CompressedPathRaw,
},
// If exactly at this node.
// if put, update this node
// if delete, may cause deletion / path compression (delete this node,
// parent update child, update path of original child node)
Arrived,
Descent {
key_remaining: KeyPart<'key>,
child_index: u8,
child_node: ChildIdType,
},
// To descent, however child doesn't exists:
// to modify this node or create a new node to replace this node (update
// child) Then create a new node for remaining key_part. if put single
// version, this node changes, parent update merkle.
//
// if get / delete (not found)
ChildNotFound {
key_remaining: CompressedPathRef<'key>,
child_index: u8,
},
}
impl<'key, ChildIdType> WalkStop<'key, ChildIdType> {
pub fn path_diverted_uninitialized() -> Self {
WalkStop::PathDiverted {
key_child_index: None,
key_remaining: Default::default(),
matched_path: Default::default(),
unmatched_child_index: 0,
unmatched_path_remaining: Default::default(),
}
}
}
pub trait GetChildTrait<'node> {
type ChildIdType: 'node;
fn get_child(&'node self, child_index: u8) -> Option<Self::ChildIdType>;
}
pub trait TrieNodeWalkTrait<'node>:
TrieNodeTrait + GetChildTrait<'node>
{
fn walk<'key, AM: access_mode::AccessMode>(
&'node self, key: KeyPart<'key>,
) -> WalkStop<'key, Self::ChildIdType> {
walk::<AM, _>(key, &self.compressed_path_ref(), self)
}
}
/// Traverse.
///
/// When a trie node start with the second nibble, the trie node has a
/// compressed path of step 1. The nibble in the compressed path is
/// the same as its child index.
///
/// The start of key is always aligned with compressed path of
/// current node, e.g. if compressed path starts at the second-half, so
/// should be key.
pub(super) fn walk<
'key,
'node,
AM: access_mode::AccessMode,
Node: GetChildTrait<'node>,
>(
key: KeyPart<'key>, path: &dyn CompressedPathTrait, node: &'node Node,
) -> WalkStop<'key, Node::ChildIdType> {
let path_slice = path.path_slice();
let path_mask = path.path_mask();
let matched_path_begin_mask = CompressedPathRaw::second_nibble(path_mask);
let mut unmatched_path_mask =
CompressedPathRaw::clear_second_nibble(path_mask);
// Compare bytes till the last full byte. The first byte is always
// included because even if it's the second-half, it must be
// already matched before entering this TrieNode.
let memcmp_len = min(
path_slice.len()
- (CompressedPathRaw::no_second_nibble(path_mask) as usize),
key.len(),
);
for i in 0..memcmp_len {
if path_slice[i] != key[i] {
if AM::READ_ONLY {
return WalkStop::path_diverted_uninitialized();
} else {
let matched_path: CompressedPathRaw;
let key_child_index: u8;
let key_remaining;
let unmatched_child_index: u8;
let unmatched_path_remaining: &[u8];
if CompressedPathRaw::first_nibble(path_slice[i] ^ key[i]) == 0
{
// "First half" matched
matched_path = CompressedPathRaw::new_and_apply_mask(
&path_slice[0..i + 1],
matched_path_begin_mask
| CompressedPathRaw::second_nibble_mask(),
);
key_child_index = CompressedPathRaw::second_nibble(key[i]);
key_remaining = CompressedPathRef::new(
&key[i + 1..],
CompressedPathRaw::NO_MISSING_NIBBLE,
);
unmatched_child_index =
CompressedPathRaw::second_nibble(path_slice[i]);
unmatched_path_remaining = &path_slice[i + 1..];
} else {
matched_path = CompressedPathRaw::new(
&path_slice[0..i],
matched_path_begin_mask,
);
key_child_index = CompressedPathRaw::first_nibble(key[i]);
key_remaining = CompressedPathRef::new(
&key[i..],
CompressedPathRaw::first_nibble_mask(),
);
unmatched_path_mask |=
CompressedPathRaw::first_nibble_mask();
unmatched_child_index =
CompressedPathRaw::first_nibble(path_slice[i]);
unmatched_path_remaining = &path_slice[i..];
}
return WalkStop::PathDiverted {
key_child_index: Some(key_child_index),
key_remaining: key_remaining.into(),
matched_path,
unmatched_child_index,
unmatched_path_remaining: CompressedPathRaw::new(
unmatched_path_remaining,
unmatched_path_mask,
),
};
}
}
}
// Key is fully consumed, get value attached.
if key.len() == memcmp_len {
// Compressed path isn't fully consumed.
if path_slice.len() > memcmp_len {
if AM::READ_ONLY {
return WalkStop::path_diverted_uninitialized();
} else {
return WalkStop::PathDiverted {
// key_remaining is empty, and key_child_index doesn't
// make sense, but we need to mark it.
key_remaining: Default::default(),
key_child_index: None,
matched_path: CompressedPathRaw::new(
&path_slice[0..memcmp_len],
matched_path_begin_mask,
),
unmatched_child_index: CompressedPathRaw::first_nibble(
path_slice[memcmp_len],
),
unmatched_path_remaining: CompressedPathRaw::new(
&path_slice[memcmp_len..],
unmatched_path_mask
| CompressedPathRaw::first_nibble_mask(),
),
};
}
} else {
return WalkStop::Arrived;
}
} else {
// Key is not fully consumed.
// When path is fully consumed, check if child exists under child_index.
let child_index;
let key_remaining;
if path_slice.len() == memcmp_len {
// Compressed path is fully consumed. Descend into one child.
child_index = CompressedPathRaw::first_nibble(key[memcmp_len]);
key_remaining = CompressedPathRef::new(
&key[memcmp_len..],
CompressedPathRaw::first_nibble_mask(),
);
} else {
// One half byte remaining to match with path. Consume it in the
// key.
if CompressedPathRaw::first_nibble(
path_slice[memcmp_len] ^ key[memcmp_len],
) != 0
{
// Mismatch.
if AM::READ_ONLY {
return WalkStop::path_diverted_uninitialized();
} else {
return WalkStop::PathDiverted {
key_child_index: Some(CompressedPathRaw::first_nibble(
key[memcmp_len],
)),
key_remaining: CompressedPathRef::new(
&key[memcmp_len..],
CompressedPathRaw::first_nibble_mask(),
),
matched_path: CompressedPathRaw::new(
&path_slice[0..memcmp_len],
matched_path_begin_mask,
),
unmatched_child_index: CompressedPathRaw::first_nibble(
path_slice[memcmp_len],
),
unmatched_path_remaining: CompressedPathRaw::new(
&path_slice[memcmp_len..],
unmatched_path_mask
| CompressedPathRaw::first_nibble_mask(),
),
};
}
} else {
child_index = CompressedPathRaw::second_nibble(key[memcmp_len]);
key_remaining = CompressedPathRef::new(
&key[memcmp_len + 1..],
CompressedPathRaw::NO_MISSING_NIBBLE,
);
}
}
match node.get_child(child_index) {
Option::None => {
return WalkStop::ChildNotFound {
key_remaining,
child_index,
};
}
Option::Some(child_node) => {
return WalkStop::Descent {
key_remaining: key_remaining.path_slice,
child_index,
child_node,
};
}
}
}
}