1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
// Copyright 2019 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/

//! Pre-allocated storage for a uniform data type.
//!
//! `Slab` provides pre-allocated storage for a single data type. If many values
//! of a single type are being allocated, it can be more efficient to
//! pre-allocate the necessary storage. Since the size of the type is uniform,
//! memory fragmentation can be avoided. Storing, clearing, and lookup
//! operations become very cheap.
//!
//! While `Slab` may look like other Rust collections, it is not intended to be
//! used as a general purpose collection. The primary difference between `Slab`
//! and `Vec` is that `Slab` returns the key when storing the value.
//!
//! It is important to note that keys may be reused. In other words, once a
//! value associated with a given key is removed from a slab, that key may be
//! returned from future calls to `insert`.
//!
//! # Examples
//!
//! Basic storing and retrieval.
//!
//! ```
//! use cfx_storage::Slab;
//! let mut slab: Slab<&str> = Slab::with_capacity(10);
//!
//! let hello = slab.insert("hello").unwrap();
//! let world = slab.insert("world").unwrap();
//!
//! assert_eq!(slab[hello], "hello");
//! assert_eq!(slab[world], "world");
//!
//! // Cannot IndexMut
//! // slab[world] = "earth";
//! // assert_eq!(slab[world], "earth");
//! ```
//!
//! Sometimes it is useful to be able to associate the key with the value being
//! inserted in the slab. This can be done with the `vacant_entry` API as such:
//!
//! ```
//! use cfx_storage::Slab;
//! let mut slab: Slab<(usize, &str)> = Slab::with_capacity(10);
//!
//! let hello = {
//!     let entry = slab.vacant_entry().unwrap();
//!     let key = entry.key();
//!     // this line prevents buggy doc test from triggering.
//!     entry.insert((key, "hello"));
//!     key
//! };
//!
//! assert_eq!(hello, slab[hello].0);
//! assert_eq!("hello", slab[hello].1);
//! ```
//!
//! It is generally a good idea to specify the desired capacity of a slab at
//! creation time. Note that `Slab` will grow the internal capacity when
//! attempting to insert a new value once the existing capacity has been
//! reached. To avoid this, add a check.
//!
//! ```
//! use cfx_storage::Slab;
//! let mut slab: Slab<&str> = Slab::with_capacity(1024);
//!
//! // ... use the slab
//!
//! if slab.len() == slab.capacity() {
//!     panic!("slab full");
//! }
//!
//! slab.insert("the slab is not at capacity yet");
//! ```
//!
//! # Capacity and reallocation
//!
//! The capacity of a slab is the amount of space allocated for any future
//! values that will be inserted in the slab. This is not to be confused with
//! the *length* of the slab, which specifies the number of actual values
//! currently being inserted. If a slab's length is equal to its capacity, the
//! next value inserted into the slab will require growing the slab by
//! reallocating.
//!
//! For example, a slab with capacity 10 and length 0 would be an empty slab
//! with space for 10 more stored values. Storing 10 or fewer elements into the
//! slab will not change its capacity or cause reallocation to occur. However,
//! if the slab length is increased to 11 (due to another `insert`), it will
//! have to reallocate, which can be slow. For this reason, it is recommended to
//! use [`Slab::with_capacity`] whenever possible to specify how many values the
//! slab is expected to store.
//!
//! # Implementation
//!
//! `Slab` is backed by a `Vec` of slots. Each slot is either occupied or
//! vacant. `Slab` maintains a stack of vacant slots using a linked list. To
//! find a vacant slot, the stack is popped. When a slot is released, it is
//! pushed onto the stack.
//!
//! If there are no more available slots in the stack, then `Vec::reserve(1)` is
//! called and a new slot is created.
//!
//! [`Slab::with_capacity`]: struct.Slab.html#with_capacity

#![allow(unknown_lints, missing_safety_doc)]
#![deny(warnings, missing_debug_implementations)]

use super::super::{
    super::utils::{UnsafeCellExtension, WrappedCreateFrom},
    errors::*,
};
use malloc_size_of::{MallocSizeOf, MallocSizeOfOps};
use parking_lot::Mutex;
use std::{
    cell::UnsafeCell, fmt, iter::IntoIterator, marker::PhantomData, ops, ptr,
    slice,
};

/// Pre-allocated storage for a uniform data type.
/// The modified slab offers thread-safety without giant lock by mimicking the
/// behavior of independent pointer at best.
///
/// Resizing the slab itself requires &mut, other operations can be done with &.
///
/// Getting reference to allocated slot doesn't conflict with any other
/// operations. Slab doesn't check if user get &mut and & for the same slot.
/// User should maintain a layer which controls the mutability of each specific
/// slot. It can be done through the wrapper around the slot index, or in the
/// type which implements `EntryTrait<T>`.
///
/// Allocation and Deallocation are serialized by mutex because they modify the
/// slab link-list.
pub struct Slab<T, E: EntryTrait<EntryType = T> = Entry<T>> {
    /// Chunk of memory
    // entries is always kept full in order to prevent changing vector
    // when allocating space for new element. We would like to keep the size of
    // initialized entry in AllocRelatedFields#size_initialized instead of
    // vector.
    entries: Vec<UnsafeCell<E>>,

    /// Fields which are modified when allocate / delete an entry.
    alloc_fields: Mutex<AllocRelatedFields>,

    value_type: PhantomData<T>,
}

impl<T, E: EntryTrait<EntryType = T> + MallocSizeOf> MallocSizeOf
    for Slab<T, E>
{
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        self.entries.size_of(ops)
    }
}

unsafe impl<T, E: EntryTrait<EntryType = T>> Sync for Slab<T, E> {}

#[derive(Default)]
struct AllocRelatedFields {
    // Number of Filled elements currently in the slab
    used: usize,
    // Size of the memory where it's initialized with data or offset to next
    // available slot.
    size_initialized: usize,
    // Offset of the next available slot in the slab. Set to the slab's
    // capacity when the slab is full.
    next: usize,
}

/// Slab physically stores a concrete type which implements `EntryTrait<T>` for
/// value type T. The `EntryTrait<T>` is responsible to hold the value type and
/// the next vacant link list for slab.
pub trait EntryTrait: Sized + Default {
    type EntryType;

    fn from_value(value: Self::EntryType) -> Self;

    fn from_vacant_index(next: usize) -> Self;

    fn is_vacant(&self) -> bool;

    fn take_occupied_and_replace_with_vacant_index(
        &mut self, next: usize,
    ) -> Self::EntryType {
        unsafe {
            let ret = ptr::read(self.get_occupied_mut());
            // Semantically, val is moved into ret and self is dropped.

            ptr::write(self, Self::from_vacant_index(next));
            // Semantically, new is dropped, self now holds new.

            ret
        }
    }

    fn get_next_vacant_index(&self) -> usize;
    fn get_occupied_ref(&self) -> &Self::EntryType;
    fn get_occupied_mut(&mut self) -> &mut Self::EntryType;
}

impl<T: EntryTrait<EntryType = T>> EntryTrait for UnsafeCell<T> {
    type EntryType = UnsafeCell<T>;

    fn from_value(value: UnsafeCell<T>) -> Self {
        UnsafeCell::new(T::from_value(value.into_inner()))
    }

    fn from_vacant_index(next: usize) -> Self {
        UnsafeCell::new(T::from_vacant_index(next))
    }

    fn is_vacant(&self) -> bool { self.get_ref().is_vacant() }

    fn take_occupied_and_replace_with_vacant_index(
        &mut self, next: usize,
    ) -> UnsafeCell<T> {
        unsafe {
            let ret = ptr::read(self.get_occupied_mut());
            // Semantically, val is moved into ret and self is dropped.

            ptr::write(self.get_mut(), T::from_vacant_index(next));
            // Semantically, new is dropped, self now holds new.

            ret
        }
    }

    fn get_next_vacant_index(&self) -> usize {
        self.get_ref().get_next_vacant_index()
    }

    fn get_occupied_ref(&self) -> &UnsafeCell<T> { self }

    fn get_occupied_mut(&mut self) -> &mut UnsafeCell<T> { self }
}

impl<T> EntryTrait for Entry<T> {
    type EntryType = T;

    fn from_value(value: T) -> Self { Entry::Occupied(value) }

    fn from_vacant_index(index: usize) -> Self { Entry::Vacant(index) }

    fn is_vacant(&self) -> bool { matches!(self, Entry::Vacant(_)) }

    fn get_next_vacant_index(&self) -> usize {
        match *self {
            Entry::Vacant(index) => index,
            _ => unreachable!(),
        }
    }

    fn get_occupied_ref(&self) -> &T {
        match self {
            Entry::Occupied(val) => val,
            _ => unreachable!(),
        }
    }

    fn get_occupied_mut(&mut self) -> &mut T {
        match self {
            Entry::Occupied(val) => val,
            _ => unreachable!(),
        }
    }
}

impl<E: EntryTrait> WrappedCreateFrom<E::EntryType, E> for E {
    fn take(val: E::EntryType) -> E { E::from_value(val) }
}

// TODO: Check future rust compiler support. It's quite unfortunate that the
// TODO: current rust compiler think that the commented out code conflict with
// TODO: the one above. We implemented UnsafeCell EntryTrait in
// TODO: super::merkle_patricia_trie.
/*
impl<'x, E: EntryTrait> WrappedCreateFrom<&'x E::EntryType, E> for E where E::EntryType : Clone {
    fn take(val: &'x E::EntryType) -> E {
        E::from_value(val.clone())
    }
}
*/

impl<'x, T: Clone> WrappedCreateFrom<&'x T, Entry<T>> for Entry<T> {
    fn take(val: &'x T) -> Self { Entry::Occupied(val.clone()) }

    fn take_from(dest: &mut Entry<T>, val: &'x T) {
        match dest {
            Entry::Occupied(t_dest) => {
                t_dest.clone_from(val);
            }
            Entry::Vacant(_) => {
                *dest = Entry::Occupied(val.clone());
            }
        }
    }
}

impl<'x, T: Clone> WrappedCreateFrom<&'x T, Entry<UnsafeCell<T>>>
    for Entry<UnsafeCell<T>>
{
    fn take(val: &'x T) -> Self {
        Entry::Occupied(UnsafeCell::new(val.clone()))
    }

    fn take_from(dest: &mut Entry<UnsafeCell<T>>, val: &'x T) {
        match dest {
            Entry::Occupied(unsafecell_dest) => {
                unsafecell_dest.get_mut().clone_from(val);
            }
            Entry::Vacant(_) => {
                *dest = Entry::Occupied(UnsafeCell::new(val.clone()));
            }
        }
    }
}

/// A handle to a vacant entry in a `Slab`.
///
/// `VacantEntry` allows constructing values with the key that they will be
/// assigned to.
///
/// # Examples
/// ```
/// # use cfx_storage::Slab;
/// let mut slab: Slab<(usize, &str)> = Slab::with_capacity(10);
///
/// let hello = {
///     let entry = slab.vacant_entry().unwrap();
///     let key = entry.key();
///     // this line prevents buggy doc test from triggering.
///     entry.insert((key, "hello"));
///     key
/// };
///
/// assert_eq!(hello, slab[hello].0);
/// assert_eq!("hello", slab[hello].1);
/// ```
#[derive(Debug)]
pub struct VacantEntry<'a, T: 'a, E: 'a + EntryTrait<EntryType = T>> {
    slab: &'a Slab<T, E>,
    key: usize,
    // Panic if insert is not called at all because the allocated slot must be
    // initialized.
    inserted: bool,
}

impl<'a, T: 'a, E: 'a + EntryTrait<EntryType = T>> Drop
    for VacantEntry<'a, T, E>
{
    fn drop(&mut self) { assert!(self.inserted) }
}

/// A mutable iterator over the values stored in the `Slab`
pub struct IterMut<'a, T: 'a, E: 'a + EntryTrait<EntryType = T>> {
    entries: slice::IterMut<'a, UnsafeCell<E>>,
    curr: usize,
    value_type: PhantomData<T>,
}

#[derive(Clone, Debug)]
pub enum Entry<T> {
    Vacant(usize),
    Occupied(T),
}

impl<T: MallocSizeOf> MallocSizeOf for Entry<T> {
    fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
        match self {
            Entry::Vacant(_) => 0,
            Entry::Occupied(e) => e.size_of(ops),
        }
    }
}

impl<T> Default for Entry<T> {
    fn default() -> Self { Entry::Vacant(0) }
}

impl<T, E: EntryTrait<EntryType = T>> Default for Slab<T, E> {
    fn default() -> Self {
        Self {
            entries: Default::default(),
            alloc_fields: Default::default(),
            value_type: PhantomData,
        }
    }
}

impl<T, E: EntryTrait<EntryType = T>> Slab<T, E> {
    /// Construct a new, empty `Slab` with the specified capacity.
    ///
    /// The returned slab will be able to store exactly `capacity` without
    /// reallocating. If `capacity` is 0, the slab will not allocate.
    ///
    /// It is important to note that this function does not specify the *length*
    /// of the returned slab, but only the capacity. For an explanation of the
    /// difference between length and capacity, see [Capacity and
    /// reallocation](index.html#capacity-and-reallocation).
    ///
    /// # Examples
    ///
    /// # use cfx_storage::Slab;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// // The slab contains no values, even though it has capacity for more
    /// assert_eq!(slab.len(), 0);
    ///
    /// // These are all done without reallocating...
    /// for i in 0..10 {
    ///     slab.insert(i);
    /// }
    ///
    /// // ...but this may make the slab reallocate
    /// slab.insert(11);
    pub fn with_capacity(capacity: usize) -> Self {
        let mut new = Slab::default();
        new.reserve(capacity).unwrap();
        new
    }

    /// Return the number of values the slab can store without reallocating.
    ///
    /// # Examples
    ///
    /// # use cfx_storage::Slab;
    /// ```
    /// use cfx_storage::Slab;
    /// let slab: Slab<i32> = Slab::with_capacity(10);
    /// assert_eq!(slab.capacity(), 10);
    /// ```
    pub fn capacity(&self) -> usize { self.entries.capacity() }

    /// Reserve capacity for at least `additional` more values to be stored
    /// without allocating.
    ///
    /// `reserve` does nothing if the slab already has sufficient capacity for
    /// `additional` more values. If more capacity is required, a new segment of
    /// memory will be allocated and all existing values will be copied into it.
    /// As such, if the slab is already very large, a call to `reserve` can end
    /// up being expensive.
    ///
    /// The slab may reserve more than `additional` extra space in order to
    /// avoid frequent reallocations. Use `reserve_exact` instead to guarantee
    /// that only the requested space is allocated.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// # use cfx_storage::Slab;
    /// let mut slab = Slab::with_capacity(10);
    /// slab.insert("hello");
    /// slab.reserve(10);
    /// assert!(slab.capacity() >= 11);
    pub fn reserve(&mut self, additional: usize) -> Result<()> {
        let old_capacity = self.capacity();
        if old_capacity - self.len() >= additional {
            return Ok(());
        }
        let need_add = self.len() + additional - old_capacity;
        self.entries.reserve(need_add);
        // TODO(yz): should return error instead of panic, however, try_reserve*
        // is only in nightly.
        // self.entries.
        // try_reserve(need_add).chain_err(|| ErrorKind::OutOfMem)?;
        let capacity = self.capacity();
        self.resize_up(old_capacity, capacity);
        Ok(())
    }

    /// Reserve the minimum capacity required to store exactly `additional`
    /// more values.
    ///
    /// `reserve_exact` does nothing if the slab already has sufficient capacity
    /// for `additional` more values. If more capacity is required, a new
    /// segment of memory will be allocated and all existing values will be
    /// copied into it.  As such, if the slab is already very large, a call
    /// to `reserve` can end up being expensive.
    ///
    /// Note that the allocator may give the slab more space than it requests.
    /// Therefore capacity can not be relied upon to be precisely minimal.
    /// Prefer `reserve` if future insertions are expected.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// # use cfx_storage::Slab;
    /// let mut slab = Slab::with_capacity(10);
    /// slab.insert("hello");
    /// slab.reserve_exact(10);
    /// assert!(slab.capacity() >= 11);
    pub fn reserve_exact(&mut self, additional: usize) -> Result<()> {
        let old_capacity = self.capacity();
        if old_capacity - self.len() >= additional {
            return Ok(());
        }
        let need_add = self.len() + additional - old_capacity;
        // TODO(yz): should return error instead of panic, however, try_reserve*
        // is only in nightly.
        // self.entries.
        // try_reserve_exact(need_add).chain_err(|| ErrorKind::OutOfMem)?;
        self.entries.reserve_exact(need_add);
        let capacity = self.capacity();
        self.resize_up(old_capacity, capacity);
        Ok(())
    }

    // TODO(yz): resize_default is nightly only.
    fn resize_up(&mut self, capacity: usize, new_capacity: usize) {
        for _i in capacity..new_capacity {
            self.entries.push(Default::default());
        }
    }

    fn resize_down(&mut self, capacity: usize, new_capacity: usize) {
        for _i in new_capacity..capacity {
            self.entries.pop();
        }
    }

    /// Shrink the capacity of the slab as much as possible.
    ///
    /// It will drop down as close as possible to the length but the allocator
    /// may still inform the vector that there is space for a few more elements.
    /// Also, since values are not moved, the slab cannot shrink past any stored
    /// values.
    ///
    /// # Examples
    ///
    /// # use cfx_storage::Slab;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// for i in 0..3 {
    ///     slab.insert(i);
    /// }
    ///
    /// assert_eq!(slab.capacity(), 10);
    /// slab.shrink_to_fit();
    /// assert!(slab.capacity() >= 3);
    ///
    /// In this case, even though two values are removed, the slab cannot shrink
    /// past the last value.
    ///
    /// # use cfx_storage::Slab;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// for i in 0..3 {
    ///     slab.insert(i);
    /// }
    ///
    /// slab.remove(0);
    /// slab.remove(1);
    ///
    /// assert_eq!(slab.capacity(), 10);
    /// slab.shrink_to_fit();
    /// assert!(slab.capacity() >= 3);
    pub fn shrink_to_fit(&mut self) {
        let capacity = self.capacity();
        let new_capacity = self.alloc_fields.get_mut().size_initialized;

        self.resize_down(capacity, new_capacity);
        self.entries.shrink_to_fit();
    }

    /// Clear the slab of all values.
    ///
    /// # Examples
    ///
    /// # use cfx_storage::Slab;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// for i in 0..3 {
    ///     slab.insert(i);
    /// }
    ///
    /// slab.clear();
    /// assert!(slab.is_empty());
    pub fn clear(&mut self) { std::mem::take(self); }

    /// Return the number of stored values.
    ///
    /// # Examples
    ///
    /// # use cfx_storage::Slab;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// for i in 0..3 {
    ///     slab.insert(i);
    /// }
    ///
    /// assert_eq!(3, slab.len());
    pub fn len(&self) -> usize { self.alloc_fields.lock().used }

    /// Return `true` if there are no values stored in the slab.
    ///
    /// # Examples
    ///
    /// # use cfx_storage::Slab;
    /// let mut slab = Slab::with_capacity(10);
    /// assert!(slab.is_empty());
    ///
    /// slab.insert(1);
    /// assert!(!slab.is_empty());
    pub fn is_empty(&self) -> bool { self.len() == 0 }

    /// Return an iterator that allows modifying each value.
    ///
    /// This function should generally be **avoided** as it is not efficient.
    /// Iterators must iterate over every slot in the slab even if it is
    /// vacant. As such, a slab with a capacity of 1 million but only one
    /// stored value must still iterate the million slots.
    ///
    /// # Examples
    ///
    /// ```
    /// # use cfx_storage::Slab;
    /// let mut slab: Slab<usize> = Slab::with_capacity(10);
    ///
    /// let key1 = slab.insert(0).unwrap();
    /// let key2 = slab.insert(1).unwrap();
    ///
    /// for (key, val) in slab.iter_mut() {
    ///     if key == key1 {
    ///         *val += 2;
    ///     }
    /// }
    ///
    /// assert_eq!(slab[key1], 2);
    /// assert_eq!(slab[key2], 1);
    /// ```
    pub fn iter_mut(&mut self) -> IterMut<T, E> {
        IterMut {
            entries: self.entries
                [0..self.alloc_fields.get_mut().size_initialized]
                .iter_mut(),
            curr: 0,
            value_type: PhantomData,
        }
    }

    /// Return a reference to the value associated with the given key.
    ///
    /// If the given key is not associated with a value, then `None` is
    /// returned.
    ///
    /// # Examples
    ///
    /// # use cfx_storage::Slab;
    /// let mut slab = Slab::with_capacity(10);
    /// let key = slab.insert("hello");
    ///
    /// assert_eq!(slab.get(key), Some(&"hello"));
    /// assert_eq!(slab.get(123), None);
    pub fn get(&self, key: usize) -> Option<&T> {
        self.entries.get(key).and_then(|entry| {
            if entry.get_ref().is_vacant() {
                None
            } else {
                Some(entry.get_ref().get_occupied_ref())
            }
        })
    }

    /// Return a mutable reference to the value associated with the given key.
    ///
    /// If the given key is not associated with a value, then `None` is
    /// returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use cfx_storage::Slab;
    /// let mut slab: Slab<&str> = Slab::with_capacity(10);
    /// let key = slab.insert("hello").unwrap();
    ///
    /// *slab.get_mut(key).unwrap() = "world";
    ///
    /// assert_eq!(slab[key], "world");
    /// assert_eq!(slab.get_mut(123), None);
    /// ```
    // This method is unsafe because user may pass the same key to get_mut at
    // the same time.
    pub fn get_mut(&mut self, key: usize) -> Option<&mut T> {
        self.entries.get_mut(key).and_then(|entry| {
            if entry.get_ref().is_vacant() {
                None
            } else {
                Some(entry.get_mut().get_occupied_mut())
            }
        })
    }

    /// Return a reference to the value associated with the given key without
    /// performing bounds checking.
    ///
    /// This function should be used with care.
    ///
    /// # Examples
    ///
    /// # use cfx_storage::Slab;
    /// let mut slab = Slab::with_capacity(10);
    /// let key = slab.insert(2);
    ///
    /// unsafe {
    ///     assert_eq!(slab.get_unchecked(key), &2);
    /// }
    pub unsafe fn get_unchecked(&self, key: usize) -> &T {
        self.entries.get_unchecked(key).get_ref().get_occupied_ref()
    }

    /// Return a mutable reference to the value associated with the given key
    /// without performing bounds checking.
    ///
    /// This function should be used with care.
    ///
    /// # Examples
    ///
    /// ```
    /// use cfx_storage::Slab;
    /// let mut slab: Slab<u32> = Slab::with_capacity(10);
    /// let key = slab.insert(2).unwrap();
    ///
    /// unsafe {
    ///     let val = slab.get_unchecked_mut(key);
    ///     *val = 13;
    /// }
    ///
    /// assert_eq!(slab[key], 13);
    /// ```
    pub unsafe fn get_unchecked_mut(&mut self, key: usize) -> &mut T {
        self.entries
            .get_unchecked_mut(key)
            .get_mut()
            .get_occupied_mut()
    }

    /// Insert a value in the slab, returning key assigned to the value.
    ///
    /// The returned key can later be used to retrieve or remove the value using
    /// indexed lookup and `remove`. Additional capacity is allocated if
    /// needed. See [Capacity and
    /// reallocation](index.html#capacity-and-reallocation).
    ///
    /// # Panics
    ///
    /// Panics if the number of elements in the vector overflows a `usize`.
    ///
    /// # Examples
    /// ```
    /// use cfx_storage::Slab;
    /// let mut slab: Slab<&str> = Slab::with_capacity(10);
    /// let key = slab.insert("hello").unwrap();
    /// assert_eq!(slab[key], "hello");
    /// ```
    pub fn insert<U>(&self, val: U) -> Result<usize>
    where E: WrappedCreateFrom<U, E> {
        let key = self.allocate()?;
        self.insert_at(key, val);
        Ok(key)
    }

    pub fn allocate(&self) -> Result<usize> {
        let mut alloc_fields = self.alloc_fields.lock();
        let key = alloc_fields.next;
        if key == self.entries.capacity() {
            Err(Error::OutOfMem)
        } else {
            alloc_fields.used += 1;
            if key == alloc_fields.size_initialized {
                alloc_fields.next = key + 1;
                alloc_fields.size_initialized = alloc_fields.next;
            } else {
                alloc_fields.next =
                    self.entries[key].get_ref().get_next_vacant_index();
            }
            Ok(key)
        }
    }

    /// Cast an entry to ref mut when creating value into the slot or freeing
    /// value from the slot.
    fn cast_entry_ref_mut(&self, key: usize) -> &mut E {
        unsafe { self.entries.get_unchecked(key).get_as_mut() }
    }

    fn insert_at<U>(&self, key: usize, val: U) -> &mut T
    where E: WrappedCreateFrom<U, E> {
        let entry = self.cast_entry_ref_mut(key);
        E::take_from(entry, val);
        entry.get_occupied_mut()
    }

    /// Return a handle to a vacant entry allowing for further manipulation.
    ///
    /// This function is useful when creating values that must contain their
    /// slab key. The returned `VacantEntry` reserves a slot in the slab and is
    /// able to query the associated key.
    ///
    /// # Examples
    ///
    /// ```
    /// use cfx_storage::Slab;
    /// let mut slab: Slab<(usize, &str)> = Slab::with_capacity(10);
    ///
    /// let hello = {
    ///     let entry = slab.vacant_entry().unwrap();
    ///     let key = entry.key();
    ///     // this line prevents buggy doc test from triggering.
    ///     entry.insert((key, "hello"));
    ///     key
    /// };
    ///
    /// assert_eq!(hello, slab[hello].0);
    /// assert_eq!("hello", slab[hello].1);
    /// ```
    pub fn vacant_entry(&self) -> Result<VacantEntry<T, E>> {
        Ok(VacantEntry {
            key: self.allocate()?,
            slab: self,
            inserted: false,
        })
    }

    /// Remove and return the value associated with the given key.
    ///
    /// The key is then released and may be associated with future stored
    /// values.
    ///
    /// # Panics
    ///
    /// Panics if `key` is not associated with a value.
    ///
    /// # Examples
    ///
    /// # use cfx_storage::Slab;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// let hello = slab.insert("hello");
    ///
    /// assert_eq!(slab.remove(hello), "hello");
    /// assert!(!slab.contains(hello));
    pub fn remove(&self, key: usize) -> Result<T> {
        if key > self.entries.len() {
            // Index out of range.
            return Err(Error::SlabKeyError);
        }
        let mut alloc_fields = self.alloc_fields.lock();
        let next = alloc_fields.next;
        let entry = self.cast_entry_ref_mut(key);
        if entry.is_vacant() {
            // Trying to free unallocated space.
            Err(Error::SlabKeyError)
        } else {
            alloc_fields.used -= 1;
            alloc_fields.next = key;
            Ok(entry.take_occupied_and_replace_with_vacant_index(next))
        }
    }

    /// Return `true` if a value is associated with the given key.
    ///
    /// # Examples
    ///
    /// # use cfx_storage::Slab;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// let hello = slab.insert("hello");
    /// assert!(slab.contains(hello));
    ///
    /// slab.remove(hello);
    ///
    /// assert!(!slab.contains(hello));
    pub fn contains(&self, key: usize) -> bool { self.get(key).is_some() }

    /// Retain only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` such that `f(usize, &mut e)`
    /// returns false. This method operates in place and preserves the key
    /// associated with the retained values.
    ///
    /// # Examples
    ///
    /// # use cfx_storage::Slab;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// let k1 = slab.insert(0);
    /// let k2 = slab.insert(1);
    /// let k3 = slab.insert(2);
    ///
    /// slab.retain(|key, val| key == k1 || *val == 1);
    ///
    /// assert!(slab.contains(k1));
    /// assert!(slab.contains(k2));
    /// assert!(!slab.contains(k3));
    ///
    /// assert_eq!(2, slab.len());
    pub fn retain<F>(&mut self, mut f: F)
    where F: FnMut(usize, &mut T) -> bool {
        for i in 0..self.entries.len() {
            let keep = self.get_mut(i).map_or(true, |v| f(i, v));

            if !keep {
                self.remove(i).unwrap();
            }
        }
    }
}

impl<T, E: EntryTrait<EntryType = T>> ops::Index<usize> for Slab<T, E> {
    type Output = T;

    fn index(&self, key: usize) -> &T {
        self.entries[key].get_ref().get_occupied_ref()
    }
}

impl<'a, T, E: EntryTrait<EntryType = T>> IntoIterator for &'a mut Slab<T, E> {
    type IntoIter = IterMut<'a, T, E>;
    type Item = (usize, &'a mut T);

    fn into_iter(self) -> IterMut<'a, T, E> { self.iter_mut() }
}

impl<T, E: EntryTrait<EntryType = T>> fmt::Debug for Slab<T, E>
where T: fmt::Debug
{
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(
            fmt,
            "Slab {{ len: {}, cap: {} }}",
            self.len(),
            self.capacity()
        )
    }
}

impl<'a, T: 'a, E: EntryTrait<EntryType = T>> fmt::Debug for IterMut<'a, T, E>
where T: fmt::Debug
{
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_struct("IterMut")
            .field("curr", &self.curr)
            .field("remaining", &self.entries.len())
            .finish()
    }
}

// ===== VacantEntry =====

impl<'a, T, E: EntryTrait<EntryType = T>> VacantEntry<'a, T, E> {
    /// Insert a value in the entry, returning a mutable reference to the value.
    ///
    /// To get the key associated with the value, use `key` prior to calling
    /// `insert`.
    ///
    /// # Examples
    ///
    /// ```
    /// use cfx_storage::Slab;
    /// let mut slab: Slab<(usize, &str)> = Slab::with_capacity(10);
    ///
    /// let hello = {
    ///     let entry = slab.vacant_entry().unwrap();
    ///     let key = entry.key();
    ///     // this line prevents buggy doc test from triggering.
    ///     entry.insert((key, "hello"));
    ///     key
    /// };
    ///
    /// assert_eq!(hello, slab[hello].0);
    /// assert_eq!("hello", slab[hello].1);
    /// ```
    pub fn insert<U>(mut self, val: U) -> &'a mut T
    where E: WrappedCreateFrom<U, E> {
        self.inserted = true;
        self.slab.insert_at(self.key, val)
    }

    /// Return the key associated with this entry.
    ///
    /// A value stored in this entry will be associated with this key.
    ///
    /// # Examples
    ///
    /// ```
    /// use cfx_storage::Slab;
    /// let mut slab: Slab<(usize, &str)> = Slab::with_capacity(10);
    ///
    /// let hello = {
    ///     let entry = slab.vacant_entry().unwrap();
    ///     let key = entry.key();
    ///     // this line prevents buggy doc test from triggering.
    ///     entry.insert((key, "hello"));
    ///     key
    /// };
    ///
    /// assert_eq!(hello, slab[hello].0);
    /// assert_eq!("hello", slab[hello].1);
    /// ```
    pub fn key(&self) -> usize { self.key }
}

// ===== IterMut =====

impl<'a, T, E: EntryTrait<EntryType = T>> Iterator for IterMut<'a, T, E> {
    type Item = (usize, &'a mut T);

    fn next(&mut self) -> Option<(usize, &'a mut T)> {
        for entry in &mut self.entries {
            let curr = self.curr;
            self.curr += 1;

            if !entry.get_ref().is_vacant() {
                return Some((curr, entry.get_mut().get_occupied_mut()));
            }
        }

        None
    }
}