1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
// Copyright 2019 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/

use super::{
    lru::{LRUHandle, LRU},
    removable_heap::{HeapValueUtil, Hole, RemovableHeap},
    CacheAccessResult, CacheAlgoDataAdapter, CacheAlgoDataTrait,
    CacheAlgorithm, CacheIndexTrait, CacheStoreUtil, MyInto, PrimitiveNum,
};
use malloc_size_of_derive::MallocSizeOf as MallocSizeOfDerive;
use rand::{Rng, SeedableRng};
use rand_chacha::ChaChaRng;
use std::hint;

/// In RecentLFU we keep an LRU to maintain frequency for alpha * cache_slots
/// recently visited elements. When inserting the most recent element, evict the
/// least recently used element from LRU (if necessary), then evict the
/// least frequent element from LFU (if necessary). The most recent element is
/// updated/inserted with frequency maintained in LRU. As long as an element
/// stays in LRU the frequency doesn't restart from 0.
///
/// The double link list algorithm for LFU can not extend if an element starts
/// from frequency greater than 0, and another downside is using much more
/// memory. We use heap to maintain frequency.
#[derive(MallocSizeOfDerive)]
pub struct RecentLFU<PosT: PrimitiveNum, CacheIndexT: CacheIndexTrait> {
    capacity: PosT,
    frequency_lru: LRU<PosT, RecentLFUHandle<PosT>>,
    frequency_heap: RemovableHeap<PosT, RecentLFUMetadata<PosT, CacheIndexT>>,
    #[ignore_malloc_size_of = "insignificant"]
    counter_rng: ChaChaRng,
}

/// RecentLFUHandle points to the location where frequency data is stored. A
/// non-null pos means that the object is maintained in LRU.
#[derive(Clone, Copy, MallocSizeOfDerive)]
pub struct RecentLFUHandle<PosT: PrimitiveNum> {
    pos: PosT,
}

impl<PosT: PrimitiveNum> CacheAlgoDataTrait for RecentLFUHandle<PosT> {}

impl<PosT: PrimitiveNum> RecentLFUHandle<PosT> {
    const NULL_POS: i32 = -1;

    fn placement_new_handle(&mut self, pos: PosT) { self.set_handle(pos); }

    // The code is used by an currently unused class.
    #[allow(unused)]
    fn placement_new_evicted(&mut self) { self.set_evicted(); }

    pub fn is_lru_hit(&self) -> bool { self.pos != PosT::from(Self::NULL_POS) }

    fn is_lfu_hit<CacheIndexT: CacheIndexTrait>(
        &self, heap: &RemovableHeap<PosT, RecentLFUMetadata<PosT, CacheIndexT>>,
    ) -> bool {
        self.pos < heap.get_heap_size()
            && self.pos != PosT::from(Self::NULL_POS)
    }

    pub fn set_evicted(&mut self) { self.pos = PosT::from(Self::NULL_POS); }

    fn get_handle(&self) -> PosT { self.pos }

    fn set_handle(&mut self, pos: PosT) { self.pos = pos; }
}

impl<PosT: PrimitiveNum> Default for RecentLFUHandle<PosT> {
    fn default() -> Self {
        Self {
            pos: PosT::from(Self::NULL_POS),
        }
    }
}

impl<PosT: PrimitiveNum> CacheIndexTrait for RecentLFUHandle<PosT> {}

type FrequencyType = u16;
// Use 4 bits to randomize order of cache elements with same frequency. This is
// intended to avoid always replacing the most recently accessed element with
// frequency 1 from LRU.
const RANDOM_BITS: FrequencyType = (1u16 << 4) - 1;
const COUNTER_MASK: FrequencyType = !RANDOM_BITS;
/// MAX_VISIT_COUNT == COUNTER_MASK
const MAX_VISIT_COUNT: FrequencyType = ::std::u16::MAX & COUNTER_MASK;

#[derive(MallocSizeOfDerive)]
struct RecentLFUMetadata<PosT: PrimitiveNum, CacheIndexT: CacheIndexTrait> {
    frequency: FrequencyType,
    lru_handle: LRUHandle<PosT>,
    cache_index: CacheIndexT,
}

impl<PosT: PrimitiveNum, CacheIndexT: CacheIndexTrait>
    RecentLFUMetadata<PosT, CacheIndexT>
{
    fn is_visit_counter_maximum(&self) -> bool {
        self.frequency & COUNTER_MASK == MAX_VISIT_COUNT
    }

    fn init_visit_counter_random_bits<RngT: Rng>(
        rng: &mut RngT,
    ) -> FrequencyType {
        RANDOM_BITS & rng.gen::<FrequencyType>()
    }

    fn inc_visit_counter<RngT: Rng>(&mut self, _rng: &mut RngT) {
        if !self.is_visit_counter_maximum() {
            self.frequency += RANDOM_BITS + 1
        }
    }
}

struct MetadataHeapUtil<
    'a: 'b,
    'b,
    PosT: 'a + PrimitiveNum,
    CacheIndexT: CacheIndexTrait,
    CacheStoreUtilT: 'b
        + CacheStoreUtil<
            CacheAlgoData = RecentLFUHandle<PosT>,
            ElementIndex = CacheIndexT,
        >,
> {
    frequency_lru: &'a mut LRU<PosT, RecentLFUHandle<PosT>>,
    cache_store_util: &'b mut CacheStoreUtilT,
}

impl<
        'a,
        'b,
        PosT: PrimitiveNum,
        CacheIndexT: CacheIndexTrait,
        CacheStoreUtilT: CacheStoreUtil<
            CacheAlgoData = RecentLFUHandle<PosT>,
            ElementIndex = CacheIndexT,
        >,
    > HeapValueUtil<RecentLFUMetadata<PosT, CacheIndexT>, PosT>
    for MetadataHeapUtil<'a, 'b, PosT, CacheIndexT, CacheStoreUtilT>
{
    type KeyType = FrequencyType;

    fn set_handle(
        &mut self, value: &mut RecentLFUMetadata<PosT, CacheIndexT>, pos: PosT,
    ) {
        unsafe {
            self.frequency_lru
                .get_cache_index_mut(value.lru_handle)
                .set_handle(pos);
            CacheAlgoDataAdapter::new_mut(
                self.cache_store_util,
                value.cache_index,
            )
            .placement_new_handle(pos);
        }
    }

    fn set_handle_final(
        &mut self, value: &mut RecentLFUMetadata<PosT, CacheIndexT>, pos: PosT,
    ) {
        unsafe {
            self.frequency_lru
                .get_cache_index_mut(value.lru_handle)
                .set_handle(pos);
            CacheAlgoDataAdapter::new_mut_most_recently_accessed(
                self.cache_store_util,
                value.cache_index,
            )
            .placement_new_handle(pos);
        }
    }

    fn set_removed(
        &mut self, value: &mut RecentLFUMetadata<PosT, CacheIndexT>,
    ) {
        unsafe {
            // There is no need to update lru cache_index because heap removal
            // always happens after frequency_lru removal.
            CacheAlgoDataAdapter::new_mut(
                self.cache_store_util,
                value.cache_index,
            )
            .placement_new_evicted();
        }
    }

    fn get_key_for_comparison<'x>(
        &'x self, value: &'x RecentLFUMetadata<PosT, CacheIndexT>,
    ) -> &Self::KeyType {
        &value.frequency
    }
}

type CacheStoreUtilLRUHit<'a, PosT, CacheIndexT> =
    &'a mut Vec<RecentLFUMetadata<PosT, CacheIndexT>>;

impl<'a, PosT: PrimitiveNum, CacheIndexT: CacheIndexTrait> CacheStoreUtil
    for CacheStoreUtilLRUHit<'a, PosT, CacheIndexT>
{
    type CacheAlgoData = LRUHandle<PosT>;
    type ElementIndex = RecentLFUHandle<PosT>;

    fn get(&self, element_index: Self::ElementIndex) -> LRUHandle<PosT> {
        self[MyInto::<usize>::into(element_index.get_handle())].lru_handle
    }

    fn set(
        &mut self, element_index: Self::ElementIndex,
        algo_data: &LRUHandle<PosT>,
    ) {
        self[MyInto::<usize>::into(element_index.get_handle())].lru_handle =
            *algo_data
    }
}

// TODO: in rust 2018, it's not necessary to write Type: 'a.
struct CacheStoreUtilLRUMiss<
    'a,
    'b,
    PosT: PrimitiveNum + 'a + 'b,
    CacheIndexT: CacheIndexTrait + 'a + 'b,
> {
    metadata: CacheStoreUtilLRUHit<'a, PosT, CacheIndexT>,
    new_metadata: &'b mut RecentLFUMetadata<PosT, CacheIndexT>,
}

impl<'a, 'b, PosT: PrimitiveNum, CacheIndexT: CacheIndexTrait>
    CacheStoreUtilLRUMiss<'a, 'b, PosT, CacheIndexT>
{
    fn new(
        metadata: CacheStoreUtilLRUHit<'a, PosT, CacheIndexT>,
        new_metadata: &'b mut RecentLFUMetadata<PosT, CacheIndexT>,
    ) -> Self {
        Self {
            new_metadata,
            metadata,
        }
    }
}

impl<'a, 'b, PosT: PrimitiveNum, CacheIndexT: CacheIndexTrait> CacheStoreUtil
    for CacheStoreUtilLRUMiss<'a, 'b, PosT, CacheIndexT>
{
    type CacheAlgoData = LRUHandle<PosT>;
    type ElementIndex = RecentLFUHandle<PosT>;

    fn get(&self, element_index: Self::ElementIndex) -> LRUHandle<PosT> {
        self.metadata.get(element_index)
    }

    fn get_most_recently_accessed(
        &self, _element_index: Self::ElementIndex,
    ) -> LRUHandle<PosT> {
        self.new_metadata.lru_handle
    }

    fn set(
        &mut self, element_index: Self::ElementIndex,
        algo_data: &LRUHandle<PosT>,
    ) {
        self.metadata.set(element_index, algo_data);
    }

    fn set_most_recently_accessed(
        &mut self, _element_index: Self::ElementIndex,
        algo_data: &LRUHandle<PosT>,
    ) {
        self.new_metadata.lru_handle = *algo_data;
    }
}

impl<PosT: PrimitiveNum, CacheIndexT: CacheIndexTrait> CacheAlgorithm
    for RecentLFU<PosT, CacheIndexT>
{
    type CacheAlgoData = RecentLFUHandle<PosT>;
    type CacheIndex = CacheIndexT;

    fn access<
        CacheStoreUtilT: CacheStoreUtil<
            ElementIndex = CacheIndexT,
            CacheAlgoData = RecentLFUHandle<PosT>,
        >,
    >(
        &mut self, cache_index: CacheIndexT,
        cache_store_util: &mut CacheStoreUtilT,
    ) -> CacheAccessResult<CacheIndexT> {
        let r_lfu_handle =
            cache_store_util.get_most_recently_accessed(cache_index);
        let is_lru_hit = r_lfu_handle.is_lru_hit();

        if is_lru_hit {
            self.frequency_lru
                .access(r_lfu_handle, &mut self.frequency_heap.get_array_mut());

            // Increase LFU visit counter.
            unsafe {
                self.frequency_heap
                    .get_unchecked_mut(r_lfu_handle.get_handle())
                    .inc_visit_counter(&mut self.counter_rng)
            };

            let has_space = self.has_space();
            let (heap, mut heap_util) =
                self.heap_and_heap_util(cache_store_util);

            if r_lfu_handle.is_lfu_hit(&heap) {
                heap.sift_down(r_lfu_handle.get_handle(), &mut heap_util);
                CacheAccessResult::Hit
            } else {
                // Hit in LRU but not in LFU. The heap may not be full because
                // of deletion.
                unsafe {
                    let r_lfu_metadata_ptr = heap
                        .get_unchecked_mut(r_lfu_handle.get_handle())
                        as *mut RecentLFUMetadata<PosT, CacheIndexT>;

                    let mut hole = Hole::new(r_lfu_metadata_ptr);

                    if has_space {
                        let heap_size = heap.get_heap_size();
                        if heap_size != r_lfu_handle.get_handle() {
                            hole.move_to(
                                heap.get_unchecked_mut(heap_size),
                                r_lfu_handle.get_handle(),
                                &mut heap_util,
                            );
                        }
                        heap.set_heap_size_unchecked(heap_size + PosT::from(1));

                        heap.sift_up_with_hole(heap_size, hole, &mut heap_util);

                        CacheAccessResult::MissInsert
                    } else {
                        hole.move_to(
                            heap.get_unchecked_mut(PosT::from(0)),
                            r_lfu_handle.get_handle(),
                            &mut heap_util,
                        );
                        heap.sift_down_with_hole(
                            PosT::from(0),
                            hole,
                            &mut heap_util,
                        );
                        CacheAccessResult::MissReplaced {
                            evicted: vec![],
                            evicted_keep_cache_algo_data: vec![
                                (*r_lfu_metadata_ptr).cache_index,
                            ],
                        }
                    }
                }
            }
        } else {
            let mut hole = Hole::<_>::new_uninit_pointer(RecentLFUMetadata::<PosT, CacheIndexT> {
                frequency:
                RecentLFUMetadata::<PosT, CacheIndexT>::init_visit_counter_random_bits(
                    &mut self.counter_rng,
                ),
                lru_handle: Default::default(),
                cache_index,
            });
            // r_lfu_handle equals NULL_POS.
            if self.frequency_lru.has_space() {
                {
                    let mut lru_cache_store_util = CacheStoreUtilLRUMiss::new(
                        self.frequency_heap.get_array_mut(),
                        &mut hole.value,
                    );

                    self.frequency_lru
                        .access(r_lfu_handle, &mut lru_cache_store_util);
                }

                let has_space = self.has_space();
                let (heap, mut heap_util) =
                    self.heap_and_heap_util(cache_store_util);
                if has_space {
                    unsafe {
                        heap.insert_with_hole_unchecked(hole, &mut heap_util)
                    };

                    CacheAccessResult::MissInsert
                } else {
                    let pos = unsafe {
                        heap.hole_push_back_and_swap_unchecked(
                            PosT::from(0),
                            &mut hole,
                            &mut heap_util,
                        )
                    };
                    heap.sift_down_with_hole(
                        PosT::from(0),
                        hole,
                        &mut heap_util,
                    );

                    CacheAccessResult::MissReplaced {
                        evicted: vec![],
                        evicted_keep_cache_algo_data: vec![unsafe {
                            heap.get_unchecked_mut(pos).cache_index
                        }],
                    }
                }
            } else {
                let lru_access_result;
                {
                    let mut lru_cache_store_util = CacheStoreUtilLRUMiss::new(
                        self.frequency_heap.get_array_mut(),
                        &mut hole.value,
                    );
                    lru_access_result = self
                        .frequency_lru
                        .access(r_lfu_handle, &mut lru_cache_store_util);
                }

                let (heap, mut heap_util) =
                    self.heap_and_heap_util(cache_store_util);

                match lru_access_result {
                    CacheAccessResult::MissReplaced {
                        evicted: lru_evicted_keys,
                        evicted_keep_cache_algo_data: _, // known to be empty.
                    } => {
                        // It's known to contain exactly one item.
                        let lru_evicted =
                            unsafe { lru_evicted_keys.get_unchecked(0) };

                        let evicted_cache_index;
                        let evicted_r_lfu_metadata_ptr;
                        {
                            let evicted_r_lfu_metadata = unsafe {
                                heap.get_unchecked_mut(lru_evicted.pos)
                            };
                            evicted_cache_index =
                                evicted_r_lfu_metadata.cache_index;
                            hole.pointer_pos.write(evicted_r_lfu_metadata);

                            // The caller should read the returned
                            // CacheAccessResult and
                            // removes the evicted keys.
                            // set_removed isn't necessary but prevent
                            // mysterious
                            // errors if the caller doesn't.
                            heap_util.set_removed(evicted_r_lfu_metadata);

                            evicted_r_lfu_metadata_ptr = evicted_r_lfu_metadata
                                as *mut RecentLFUMetadata<PosT, CacheIndexT>
                        }
                        if lru_evicted.is_lfu_hit(heap) {
                            // The element removed from LRU also lives in LFU.
                            // Replace it with the newly accessed item.

                            unsafe {
                                heap.replace_at_unchecked_with_hole(
                                    lru_evicted.pos,
                                    hole,
                                    &mut *evicted_r_lfu_metadata_ptr,
                                    &mut heap_util,
                                )
                            };
                            CacheAccessResult::MissReplaced {
                                evicted: vec![evicted_cache_index],
                                evicted_keep_cache_algo_data: vec![],
                            }
                        } else {
                            // The element removed from LRU lives outside LFU.
                            // Replace the least frequently visited with the
                            // newly accessed item and keep the least frequently
                            // visited in LRU.
                            let lfu_evicted = unsafe {
                                heap.get_unchecked_mut(PosT::from(0))
                                    .cache_index
                            };
                            hole.move_to(
                                unsafe {
                                    heap.get_unchecked_mut(PosT::from(0))
                                },
                                lru_evicted.pos,
                                &mut heap_util,
                            );

                            heap.sift_down_with_hole(
                                PosT::from(0),
                                hole,
                                &mut heap_util,
                            );

                            CacheAccessResult::MissReplaced {
                                evicted: vec![evicted_cache_index],
                                evicted_keep_cache_algo_data: vec![lfu_evicted],
                            }
                        }
                    }
                    _ => unsafe { hint::unreachable_unchecked() },
                }
            }
        }
    }

    fn delete<
        CacheStoreUtilT: CacheStoreUtil<
            ElementIndex = CacheIndexT,
            CacheAlgoData = RecentLFUHandle<PosT>,
        >,
    >(
        &mut self, cache_index: CacheIndexT,
        cache_store_util: &mut CacheStoreUtilT,
    ) {
        let r_lfu_handle = cache_store_util.get(cache_index);
        self.frequency_lru
            .delete(r_lfu_handle, &mut self.frequency_heap.get_array_mut());
        // Remove from heap.
        let (heap, mut heap_util) = self.heap_and_heap_util(cache_store_util);
        unsafe {
            heap.remove_at_unchecked(r_lfu_handle.get_handle(), &mut heap_util);
        }
    }

    fn log_usage(&self, prefix: &str) {
        self.frequency_lru.log_usage("{} recent_lfu#frequency ");
        debug!(
            "{}recent_lfu: capacity {}, size {}",
            prefix,
            self.capacity,
            self.frequency_heap.get_heap_size()
        );
    }
}

// The code is used in tests.
#[allow(dead_code)]
impl<PosT: PrimitiveNum, CacheIndexT: CacheIndexTrait>
    RecentLFU<PosT, CacheIndexT>
{
    pub fn new(capacity: PosT, lru_capacity: PosT) -> Self {
        Self {
            capacity,
            frequency_heap: RemovableHeap::new(lru_capacity),
            frequency_lru: LRU::new(lru_capacity),
            counter_rng: ChaChaRng::from_entropy(),
        }
    }

    fn heap_and_heap_util<
        'a,
        'b,
        CacheStoreUtilT: CacheStoreUtil<
            ElementIndex = CacheIndexT,
            CacheAlgoData = RecentLFUHandle<PosT>,
        >,
    >(
        &'a mut self, cache_store_util: &'b mut CacheStoreUtilT,
    ) -> (
        &mut RemovableHeap<PosT, RecentLFUMetadata<PosT, CacheIndexT>>,
        MetadataHeapUtil<'a, 'b, PosT, CacheIndexT, CacheStoreUtilT>,
    ) {
        (
            &mut self.frequency_heap,
            MetadataHeapUtil::<PosT, CacheIndexT, CacheStoreUtilT> {
                frequency_lru: &mut self.frequency_lru,
                cache_store_util,
            },
        )
    }

    pub fn has_space(&self) -> bool {
        self.capacity != self.frequency_heap.get_heap_size()
    }

    pub fn is_full(&self) -> bool {
        self.capacity == self.frequency_heap.get_heap_size()
    }
}