1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
// Copyright 2020 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/
#[macro_use]
extern crate lazy_static;
use cfx_types::U256;
pub mod genesis;
pub mod internal_contract_addresses;
pub mod consensus {
pub const DEFERRED_STATE_EPOCH_COUNT: u64 = 5;
pub const EPOCH_SET_PERSISTENCE_DELAY: u64 = DEFERRED_STATE_EPOCH_COUNT;
pub const ADAPTIVE_WEIGHT_DEFAULT_BETA: u64 = 1000;
pub const HEAVY_BLOCK_DEFAULT_DIFFICULTY_RATIO: u64 = 250;
pub const TIMER_CHAIN_BLOCK_DEFAULT_DIFFICULTY_RATIO: u64 = 180;
pub const TIMER_CHAIN_DEFAULT_BETA: u64 = 240;
// The number of epochs per era. Each era is a potential checkpoint
// position. The parent_edge checking and adaptive checking are defined
// relative to the era start blocks.
pub const ERA_DEFAULT_EPOCH_COUNT: u64 = 20000;
// At Conflux MainNet Launch there are approximately 2 blocks per epoch,
// with 1k TPS, and 2 blocks per second, a DeltaMPT contains data for
// around 2 million transaction.
pub const SNAPSHOT_EPOCHS_CAPACITY: u32 = 2000;
pub const NULL: usize = !0;
pub const NULLU64: u64 = !0;
pub const MAX_BLAME_RATIO_FOR_TRUST: f64 = 0.4;
pub const TRANSACTION_DEFAULT_EPOCH_BOUND: u64 = 100000;
pub const GENESIS_GAS_LIMIT: u64 = 30_000_000;
pub const ONE_CFX_IN_DRIP: u64 = 1_000_000_000_000_000_000;
pub const ONE_UCFX_IN_DRIP: u64 = 1_000_000_000_000;
pub const ONE_GDRIP_IN_DRIP: u64 = 1_000_000_000;
/// About 2020.12.11-15:30 for both the height and the block number.
pub const TANZANITE_HEIGHT: u64 = 3_615_000;
pub const BN128_ENABLE_NUMBER: u64 = 7_600_000;
pub const TANZANITE_HEADER_CUSTOM_FIRST_ELEMENT: [u8; 1] = [1];
pub const DAO_VOTE_HEADER_CUSTOM_FIRST_ELEMENT: [u8; 1] = [2];
pub const CIP112_HEADER_CUSTOM_FIRST_ELEMENT: [u8; 1] = [3];
pub const NEXT_HARDFORK_HEADER_CUSTOM_FIRST_ELEMENT: [u8; 1] = [4];
}
pub mod consensus_internal {
use crate::consensus::{ONE_CFX_IN_DRIP, ONE_GDRIP_IN_DRIP};
/// `REWARD_EPOCH_COUNT` needs to be larger than
/// `ANTICONE_PENALTY_UPPER_EPOCH_COUNT`. If we cannot cache receipts of
/// recent `REWARD_EPOCH_COUNT` epochs, the receipts will be loaded from
/// db, which may lead to performance downgrade
pub const REWARD_EPOCH_COUNT: u64 = 12;
pub const ANTICONE_PENALTY_UPPER_EPOCH_COUNT: u64 = 10;
pub const ANTICONE_PENALTY_RATIO: u64 = 100;
/// The maximum number of blocks to be executed in each epoch
pub const EPOCH_EXECUTED_BLOCK_BOUND: usize = 200;
// The initial base mining reward in uCFX.
pub const INITIAL_BASE_MINING_REWARD_IN_UCFX: u64 = 7_000_000;
// The average number of blocks mined per quarter.
pub const MINED_BLOCK_COUNT_PER_QUARTER: u64 = 15_768_000;
pub const MINING_REWARD_TANZANITE_IN_UCFX: u64 = 2_000_000;
pub const GENESIS_TOKEN_COUNT_IN_CFX: u64 = 5_000_000_000;
pub const TWO_YEAR_UNLOCK_TOKEN_COUNT_IN_CFX: u64 = 800_000_000;
// How many quarters that the mining reward keep decaying.
pub const MINING_REWARD_DECAY_PERIOD_IN_QUARTER: usize = 32;
/// This is the cap of the size of the anticone barrier. If we have more
/// than this number we will use the brute_force O(n) algorithm instead.
pub const ANTICONE_BARRIER_CAP: usize = 100;
/// Here is the delay for us to recycle those orphaned blocks in the
/// boundary of eras and large epochs.
pub const RECYCLE_TRANSACTION_DELAY: u64 = 20;
/// This is the cap of the size of `blockset_in_own_view_of_epoch`. If we
/// have more than this number, we will not store it in memory
pub const BLOCKSET_IN_OWN_VIEW_OF_EPOCH_CAP: u64 = 1000;
/// This is the minimum risk that the confirmation meter tries to maintain.
pub const CONFIRMATION_METER_MIN_MAINTAINED_RISK: f64 = 0.00000001;
/// The maximum number of epochs that the confirmation meter tries to
/// maintain internally.
pub const CONFIRMATION_METER_MAX_NUM_MAINTAINED_RISK: usize = 100;
/// The minimum timer diff value for the adaptive test in confirmation meter
/// to consider
pub const CONFIRMATION_METER_ADAPTIVE_TEST_TIMER_DIFF: u64 = 140;
/// The batch step in the confirmation meter to do the adaptive test
pub const CONFIRMATION_METER_PSI: u64 = 30;
/// The maximum value of adaptive block generation risk that a confirmation
/// meter is going to consider safe to assume no adaptive blocks in the
/// near future.
pub const CONFIRMATION_METER_MAXIMUM_ADAPTIVE_RISK: f64 = 0.0000001;
/// This controls how often the confirmation meter updates. The default is
/// to update the meter every 20 blocks. Note that confirmation meter
/// update is CPU intensive if the tree graph is in a unstable state.
pub const CONFIRMATION_METER_UPDATE_FREQUENCY: usize = 20;
// The number of blocks to settle a DAO parameter vote.
// It's set to two months now.
pub const DAO_PARAMETER_VOTE_PERIOD: u64 =
super::staking::BLOCKS_PER_DAY * 30 * 2;
// DAO votes are only effective if the total vote count reaches this minimal
// percentage of pos staking tokens.
// The condition is checked against each voted parameter separately.
pub const DAO_MIN_VOTE_PERCENTAGE: u64 = 5;
/// The initial storage point proportion after CIP107 is enabled.
pub const CIP107_STORAGE_POINT_PROP_INIT: u64 = ONE_CFX_IN_DRIP;
/// The initial base price share proportion after CIP137 is enabled.
pub const CIP137_BASEFEE_PROP_INIT: u64 = ONE_CFX_IN_DRIP;
/// The initial and minimum base price
pub const INITIAL_1559_CORE_BASE_PRICE: u64 = ONE_GDRIP_IN_DRIP;
pub const INITIAL_1559_ETH_BASE_PRICE: u64 = 20 * ONE_GDRIP_IN_DRIP;
// Parameter specified in EIP-1559
pub const ELASTICITY_MULTIPLIER: usize = 2;
}
pub mod rpc {
pub const GAS_PRICE_BLOCK_SAMPLE_SIZE: usize = 100;
pub const EVM_GAS_PRICE_BLOCK_SAMPLE_SIZE: usize = 20;
pub const GAS_PRICE_TRANSACTION_SAMPLE_SIZE: usize = 10000;
pub const EVM_GAS_PRICE_TRANSACTION_SAMPLE_SIZE: usize = 1000;
pub const TRANSACTION_COUNT_PER_BLOCK_WATER_LINE_LOW: usize = 100;
pub const TRANSACTION_COUNT_PER_BLOCK_WATER_LINE_MEDIUM: usize = 600;
pub const GAS_PRICE_DEFAULT_VALUE: usize = 1_000_000_000;
}
pub mod sync {
use std::time::Duration;
/// The threshold controlling whether a node is in catch-up mode.
/// A node is in catch-up mode if its local best epoch number is
/// CATCH_UP_EPOCH_LAG_THRESHOLD behind the median of the epoch
/// numbers of peers.
pub const CATCH_UP_EPOCH_LAG_THRESHOLD: u64 = 20;
/// This threshold controlling whether a node should request missing
/// terminals from peers when the node is in catch-up mode.
pub const REQUEST_TERMINAL_EPOCH_LAG_THRESHOLD: u64 = 40;
/// The max number of headers that are to be sent for header
/// block request.
pub const MAX_HEADERS_TO_SEND: u64 = 512;
/// The max number of blocks that are to be sent for compact block request.
pub const MAX_BLOCKS_TO_SEND: u64 = 128;
/// The max number of epochs whose hashes are to be responded
/// for request GetBlockHashesByEpoch
pub const MAX_EPOCHS_TO_SEND: u64 = 128;
pub const MAX_PACKET_SIZE: usize = 15 * 1024 * 1024 + 512 * 1024; // 15.5 MB
/// The threshold controlling whether we should query local_block_info in
/// disk when requesting block header or block. If the difference
/// between height of the block and current best height is less than
/// LOCAL_BLOCK_INFO_QUERY_THRESHOLD, we can request block directly through
/// network, otherwise we should check disk first.
pub const LOCAL_BLOCK_INFO_QUERY_THRESHOLD: u64 = 5;
/// Measured block propagation delay in *seconds*. This will determine the
/// conservative window when we measure confirmation risk internally in
/// the consensus layer.
pub const BLOCK_PROPAGATION_DELAY: u64 = 10;
lazy_static! {
// The waiting time duration that will be accumulated for resending a
// timeout request.
pub static ref REQUEST_START_WAITING_TIME: Duration =
Duration::from_secs(1);
// The waiting time duration before resending a request which failed
// due to sending error.
pub static ref FAILED_REQUEST_RESEND_WAIT: Duration =
Duration::from_millis(50);
}
//const REQUEST_WAITING_TIME_BACKOFF: u32 = 2;
pub const DEFAULT_CHUNK_SIZE: u64 = 256 * 1024;
}
pub mod pow {
// This factor N controls the bound of each difficulty adjustment.
// The new difficulty should be in the range of [(1-1/N)*D, (1+1/N)*D],
// where D is the old difficulty.
pub const DIFFICULTY_ADJUSTMENT_FACTOR: usize = 2;
pub const DIFFICULTY_ADJUSTMENT_EPOCH_PERIOD: u64 = 5000;
pub const DIFFICULTY_ADJUSTMENT_EPOCH_PERIOD_CIP: u64 = 250;
// Time unit is micro-second (usec)
// We target two blocks per second. This strikes a good balance between the
// growth of the metadata, the memory consumption of the consensus graph,
// and the confirmation speed
pub const TARGET_AVERAGE_BLOCK_GENERATION_PERIOD: u64 = 500000;
pub const INITIAL_DIFFICULTY: u64 = 20_000_000_000;
}
pub mod tx_pool {
pub const TXPOOL_DEFAULT_NONCE_BITS: usize = 128;
}
pub mod block {
use crate::consensus::GENESIS_GAS_LIMIT;
use cfx_types::U256;
// The maximum block size limit in bytes
// Consider that the simple payment transaction consumes only 100 bytes per
// second. This would allow us to have 2000 simple payment transactions
// per block. With two blocks per second, we will have 4000TPS at the
// peak with only simple payment, which is good enough for now.
pub const MAX_BLOCK_SIZE_IN_BYTES: usize = 200 * 1024;
// The maximum number of transactions to be packed in a block given
// `MAX_BLOCK_SIZE_IN_BYTES`, assuming 50-byte transactions.
pub const ESTIMATED_MAX_BLOCK_SIZE_IN_TRANSACTION_COUNT: usize = 4096;
// The maximum number of referees allowed for each block
pub const REFEREE_DEFAULT_BOUND: usize = 200;
// The maximal length of custom data in block header
pub const HEADER_CUSTOM_LENGTH_BOUND: usize = 64;
// If a new block is more than valid_time_drift ahead of the current system
// timestamp, it will be discarded (but may get received again) and the
// peer will be disconnected.
pub const VALID_TIME_DRIFT: u64 = 10 * 60;
// A new block has to be less than this drift to send to the consensus
// graph. Otherwise, it will be queued at the synchronization layer.
pub const ACCEPTABLE_TIME_DRIFT: u64 = 5 * 60;
// FIXME: a block generator parameter only. We should remove this later
pub const MAX_TRANSACTION_COUNT_PER_BLOCK: usize = 20000;
pub const DEFAULT_TARGET_BLOCK_GAS_LIMIT: u64 = GENESIS_GAS_LIMIT;
// The following parameter controls how many blocks are allowed to
// contain EVM Space transactions. Setting it to N means that one block
// must has a height of the multiple of N to contain EVM transactions.
pub const EVM_TRANSACTION_BLOCK_RATIO: u64 = 5;
// The following parameter controls the ratio of gas limit allowed for
// EVM space transactions. Setting it to N means that only 1/N of th
// block gas limit can be used for EVM transaction enabled blocks.
pub const EVM_TRANSACTION_GAS_RATIO: u64 = 2;
// The following parameter controls the ratio of gas can be passed to EVM
// space in the cross space call. Setting it to N means that only 1/N of gas
// left can be passed to the cross space call.
pub const CROSS_SPACE_GAS_RATIO: u64 = 10;
// The following parameter controls the ratio of block gas limit for the
// core space after CIP1559 is enabled. Setting it to N means that only N/10
// of the block gas limit can be used for core space transactions.
pub const CIP1559_CORE_TRANSACTION_GAS_RATIO: u64 = 9;
// The following parameter controls the ratio of block gas limit for the
// espace after CIP1559 is enabled. Setting it to N means that only N/10
// of the block gas limit can be used for espace transactions.
pub const CIP1559_ESPACE_TRANSACTION_GAS_RATIO: u64 = 5;
pub fn espace_block_gas_limit(
can_pack_espace_tx: bool, block_gas_limit: U256,
) -> U256 {
if can_pack_espace_tx {
espace_block_gas_limit_of_enabled_block(block_gas_limit)
} else {
U256::zero()
}
}
pub fn espace_block_gas_limit_of_enabled_block(
block_gas_limit: U256,
) -> U256 {
block_gas_limit * CIP1559_ESPACE_TRANSACTION_GAS_RATIO
/ super::RATIO_BASE_TEN
}
pub fn cspace_block_gas_limit(
cip1559_enabled: bool, block_gas_limit: U256,
) -> U256 {
if cip1559_enabled {
cspace_block_gas_limit_after_cip1559(block_gas_limit)
} else {
block_gas_limit
}
}
pub fn cspace_block_gas_limit_after_cip1559(block_gas_limit: U256) -> U256 {
block_gas_limit * CIP1559_CORE_TRANSACTION_GAS_RATIO
/ super::RATIO_BASE_TEN
}
}
pub mod staking {
use super::pow::TARGET_AVERAGE_BLOCK_GENERATION_PERIOD;
use crate::consensus::ONE_CFX_IN_DRIP;
use cfx_types::U256;
/// This is the number of blocks per second.
pub const BLOCKS_PER_SECOND: u64 =
1000000 / TARGET_AVERAGE_BLOCK_GENERATION_PERIOD;
/// This is the number of blocks per hour.
pub const BLOCKS_PER_HOUR: u64 = BLOCKS_PER_SECOND * 60 * 60;
/// This is the number of blocks per day.
pub const BLOCKS_PER_DAY: u64 = BLOCKS_PER_SECOND * 60 * 60 * 24;
/// This is the number of blocks per year.
pub const BLOCKS_PER_YEAR: u64 = BLOCKS_PER_DAY * 365;
/// The inverse of interest rate
pub const INVERSE_INTEREST_RATE: u64 = 25;
/// This is the storage collateral units for each KiB of code, amount in
/// COLLATERAL_UNITs. Code collateral is calculated by each whole KiB
/// rounding upwards.
pub const CODE_COLLATERAL_UNITS_PER_KI_BYTES: u64 = 512;
/// This is the storage collateral units to deposit for one key/value pair
/// in storage. 1 CFX for 16 key value entries.
pub const COLLATERAL_UNITS_PER_STORAGE_KEY: u64 = 64;
lazy_static! {
/// This is the unit of storage collateral to deposit
pub static ref DRIPS_PER_STORAGE_COLLATERAL_UNIT: U256 =
(ONE_CFX_IN_DRIP / 1024).into();
/// The collaterals in drips for one key/value pair in storage.
pub static ref COLLATERAL_DRIPS_PER_STORAGE_KEY: U256 =
*DRIPS_PER_STORAGE_COLLATERAL_UNIT
* COLLATERAL_UNITS_PER_STORAGE_KEY;
/// This is the scale factor for accumulated interest rate:
/// `BLOCKS_PER_YEAR * 2 ^ 80`.
/// The actual accumulate interest rate stored will be
/// `accumulate_interest_rate / INTEREST_RATE_SCALE`.
pub static ref ACCUMULATED_INTEREST_RATE_SCALE: U256 =
U256::from(BLOCKS_PER_YEAR) << 80;
/// The initial annual interest is 4%, which means the initial interest
/// rate per block will be
/// `4% / BLOCKS_PER_YEAR`. We will multiply it with scale factor and
/// store it as an integer.
/// This is the scale factor of initial interest rate per block.
pub static ref INTEREST_RATE_PER_BLOCK_SCALE: U256 =
U256::from(BLOCKS_PER_YEAR * 1000000);
/// This is the initial interest rate per block with scale:
/// `4% / BLOCKS_PER_YEAR * INTEREST_RATE_PER_BLOCK_SCALE`.
pub static ref INITIAL_INTEREST_RATE_PER_BLOCK: U256 =
U256::from(40000);
/// This is the service charge rate for withdraw,
/// `SERVICE_CHARGE_RATE /
/// SERVICE_CHARGE_RATE_SCALE = 0.05%`
pub static ref SERVICE_CHARGE_RATE: U256 = U256::from(5);
pub static ref SERVICE_CHARGE_RATE_SCALE: U256 = U256::from(10000);
/// This controls the tokens required for one PoS vote
pub static ref POS_VOTE_PRICE: U256 = U256::from(1000)*ONE_CFX_IN_DRIP;
}
pub fn code_collateral_units(len: usize) -> u64 {
(len as u64 + 1023) / 1024 * CODE_COLLATERAL_UNITS_PER_KI_BYTES
}
}
pub mod light {
use std::time::Duration;
lazy_static! {
/// Frequency of re-triggering sync.
pub static ref SYNC_PERIOD: Duration = Duration::from_secs(1);
/// Frequency of checking request timeouts.
pub static ref CLEANUP_PERIOD: Duration = Duration::from_secs(1);
/// Frequency of sending StatusPing message to peers.
pub static ref HEARTBEAT_PERIOD: Duration = Duration::from_secs(30);
/// Request timeouts.
pub static ref EPOCH_REQUEST_TIMEOUT: Duration = Duration::from_secs(2);
pub static ref HEADER_REQUEST_TIMEOUT: Duration = Duration::from_secs(2);
pub static ref WITNESS_REQUEST_TIMEOUT: Duration = Duration::from_secs(2);
pub static ref BLOOM_REQUEST_TIMEOUT: Duration = Duration::from_secs(2);
pub static ref RECEIPT_REQUEST_TIMEOUT: Duration = Duration::from_secs(2);
pub static ref BLOCK_TX_REQUEST_TIMEOUT: Duration = Duration::from_secs(2);
pub static ref STATE_ROOT_REQUEST_TIMEOUT: Duration = Duration::from_secs(2);
pub static ref STATE_ENTRY_REQUEST_TIMEOUT: Duration = Duration::from_secs(2);
pub static ref TX_REQUEST_TIMEOUT: Duration = Duration::from_secs(2);
pub static ref TX_INFO_REQUEST_TIMEOUT: Duration = Duration::from_secs(2);
pub static ref STORAGE_ROOT_REQUEST_TIMEOUT: Duration = Duration::from_secs(2);
/// Maximum time period we wait for a response for an on-demand query.
/// After this timeout has been reached, we try another peer or give up.
pub static ref MAX_POLL_TIME: Duration = Duration::from_secs(4);
/// Items not accessed for this amount of time are removed from the cache.
pub static ref CACHE_TIMEOUT: Duration = Duration::from_secs(5 * 60);
}
/// The threshold controlling whether a node is in catch-up mode.
/// A node is in catch-up mode if its local best epoch number is
/// `CATCH_UP_EPOCH_LAG_THRESHOLD` behind the median of the epoch
/// numbers of peers.
pub const CATCH_UP_EPOCH_LAG_THRESHOLD: u64 = 3;
/// (Maximum) number of items requested in a single request.
pub const EPOCH_REQUEST_BATCH_SIZE: usize = 100;
pub const HEADER_REQUEST_BATCH_SIZE: usize = 30;
pub const BLOOM_REQUEST_BATCH_SIZE: usize = 30;
pub const WITNESS_REQUEST_BATCH_SIZE: usize = 50;
pub const RECEIPT_REQUEST_BATCH_SIZE: usize = 30;
pub const BLOCK_TX_REQUEST_BATCH_SIZE: usize = 30;
pub const STATE_ROOT_REQUEST_BATCH_SIZE: usize = 30;
pub const STATE_ENTRY_REQUEST_BATCH_SIZE: usize = 30;
pub const TX_REQUEST_BATCH_SIZE: usize = 30;
pub const TX_INFO_REQUEST_BATCH_SIZE: usize = 30;
pub const STORAGE_ROOT_REQUEST_BATCH_SIZE: usize = 30;
/// Maximum number of in-flight items at any given time.
/// If we reach this limit, we will not request any more.
pub const MAX_HEADERS_IN_FLIGHT: usize = 1000;
pub const MAX_WITNESSES_IN_FLIGHT: usize = 500;
pub const MAX_BLOOMS_IN_FLIGHT: usize = 500;
pub const MAX_RECEIPTS_IN_FLIGHT: usize = 100;
pub const MAX_BLOCK_TXS_IN_FLIGHT: usize = 100;
pub const MAX_STATE_ROOTS_IN_FLIGHT: usize = 100;
pub const MAX_STATE_ENTRIES_IN_FLIGHT: usize = 100;
pub const MAX_TXS_IN_FLIGHT: usize = 100;
pub const MAX_TX_INFOS_IN_FLIGHT: usize = 100;
pub const MAX_STORAGE_ROOTS_IN_FLIGHT: usize = 100;
/// Maximum number of in-flight epoch requests at any given time.
/// Similar to `MAX_HEADERS_IN_FLIGHT`. However, it is hard to match
/// hash responses to epoch requests, so we count the requests instead.
pub const MAX_PARALLEL_EPOCH_REQUESTS: usize = 10;
/// Number of epochs to request in one round (in possibly multiple batches).
pub const NUM_EPOCHS_TO_REQUEST: usize = 200;
/// Minimum number of missing items in the sync pipeline.
/// If we have fewer, we will try to request some more.
pub const NUM_WAITING_HEADERS_THRESHOLD: usize = 1000;
/// Max number of epochs/headers/txs to send to a light peer in a response.
pub const MAX_EPOCHS_TO_SEND: usize = 128;
pub const MAX_HEADERS_TO_SEND: usize = 512;
pub const MAX_TXS_TO_SEND: usize = 1024;
pub const MAX_WITNESSES_TO_SEND: usize = 100;
pub const MAX_ITEMS_TO_SEND: usize = 50;
/// During syncing, we might transiently have enough malicious blaming
/// blocks to consider a correct header incorrect. For this reason, we
/// first wait for enough header to accumulate before checking blaming.
/// TODO(thegaram): review value and expose this as a parameter
pub const BLAME_CHECK_OFFSET: u64 = 20;
/// During log filtering, we stream a set of items (blooms, receipts, txs)
/// to match against. To make the process faster, we need to make sure that
/// there's always plenty of items in flight. This way, we can reduce idle
/// time when we're waiting to receive an item.
pub const LOG_FILTERING_LOOKAHEAD: usize = 100;
// Number of blocks to sample for cfx_gasPrice.
pub const GAS_PRICE_BLOCK_SAMPLE_SIZE: usize = 30;
// Maximum number of transactions to sample for cfx_gasPrice.
pub const GAS_PRICE_TRANSACTION_SAMPLE_SIZE: usize = 1000;
pub const TRANSACTION_COUNT_PER_BLOCK_WATER_LINE_LOW: usize = 100;
pub const TRANSACTION_COUNT_PER_BLOCK_WATER_LINE_MEDIUM: usize = 600;
// Number of blocks we retrieve in parallel for the gas price sample.
pub const GAS_PRICE_BATCH_SIZE: usize = 30;
}
pub const WORKER_COMPUTATION_PARALLELISM: usize = 8;
pub const RATIO_BASE_TEN: u64 = 10;
pub const RATIO_BASE_HUNDRED: u64 = 100;
pub struct DaoControlParameters {
pub pow_base_reward: U256,
pub pos_annual_interest_rate: U256,
}