1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
use super::{State, Substate};
use crate::{return_if, try_loaded};
use cfx_parameters::internal_contract_addresses::{
SPONSOR_WHITELIST_CONTROL_CONTRACT_ADDRESS, SYSTEM_STORAGE_ADDRESS,
};
use cfx_statedb::Result as DbResult;
use cfx_types::{Address, AddressSpaceUtil, AddressWithSpace, Space, U256};
use primitives::StorageValue;
impl State {
// System Storage shares the cache and checkpoint mechanisms with
// `OverlayAccount` storage entries. Similar to global statistic
// variables, it represents global variables of the blockchain system,
// operating without an owner during execution. As such, system storage
// doesn't generate collateral, nor is it recorded in receipts.
// While its access performance is slightly lower than global statistics due
// to the cache and checkpoint mechanism, it benefits code maintainability.
// New global variables are preferentially stored in system storage.
pub fn get_system_storage(&self, key: &[u8]) -> DbResult<U256> {
self.storage_at(&SYSTEM_STORAGE_ADDRESS.with_native_space(), key)
}
pub fn set_system_storage(
&mut self, key: Vec<u8>, value: U256,
) -> DbResult<()> {
// The system storage contract does not have owner, and thus does not
// require actual storage owner and substate which records ownership
// changes.
self.set_storage(
&SYSTEM_STORAGE_ADDRESS.with_native_space(),
key,
value,
Address::zero(),
&mut Substate::new(),
)
}
#[inline]
pub fn storage_at(
&self, address: &AddressWithSpace, key: &[u8],
) -> DbResult<U256> {
let acc = try_loaded!(self.read_account_lock(address));
acc.storage_at(&self.db, key)
}
#[inline]
pub fn transient_storage_at(
&self, address: &AddressWithSpace, key: &[u8],
) -> DbResult<U256> {
let acc = try_loaded!(self.read_account_lock(address));
Ok(acc.transient_storage_at(key))
}
#[inline]
pub fn storage_entry_at(
&self, address: &AddressWithSpace, key: &[u8],
) -> DbResult<StorageValue> {
let acc = try_loaded!(self.read_account_lock(address));
acc.storage_entry_at(&self.db, key)
}
#[inline]
pub fn set_storage(
&mut self, address: &AddressWithSpace, key: Vec<u8>, value: U256,
owner: Address, substate: &mut Substate,
) -> DbResult<()> {
let old_value = self.storage_entry_at(address, &key)?;
return_if!(
old_value.value == value && !Self::force_reset_owner(address)
);
self.write_account_lock(address)?
.set_storage(key, value, old_value, owner, substate)?;
Ok(())
}
#[inline]
pub fn transient_set_storage(
&mut self, address: &AddressWithSpace, key: Vec<u8>, value: U256,
) -> DbResult<()> {
Ok(self
.write_account_lock(address)?
.transient_set_storage(key, value))
}
pub fn is_fresh_storage(
&self, address: &AddressWithSpace,
) -> DbResult<bool> {
let acc = try_loaded!(self.read_account_lock(address));
Ok(acc.fresh_storage())
}
// In most cases, the ownership does not change if the set storage operation
// does not change the value. However, some implementations do not follow
// this rule. So we must deal with these special cases for backward
// compatible.
#[inline]
fn force_reset_owner(address: &AddressWithSpace) -> bool {
address.space == Space::Native
&& address.address == SPONSOR_WHITELIST_CONTROL_CONTRACT_ADDRESS
}
}
#[cfg(test)]
impl State {
/// Get the value of storage at a specific checkpoint.
pub fn checkpoint_storage_at(
&self, start_checkpoint_index: usize, address: &AddressWithSpace,
key: &Vec<u8>,
) -> DbResult<Option<U256>> {
use super::super::checkpoints::CheckpointEntry::*;
use crate::state::{
checkpoints::CheckpointLayerTrait,
overlay_account::{AccountEntry, OverlayAccount},
};
use cfx_statedb::StateDbExt;
use primitives::StorageKey;
#[derive(Debug)]
enum ReturnKind {
OriginalAt,
SameAsNext,
}
let kind = {
let checkpoints = self.checkpoints.read();
if start_checkpoint_index >= checkpoints.len() {
return Ok(None);
}
let mut kind = None;
let mut first_account: Option<&OverlayAccount> = None;
// outer checkpoints with state_checkpoint_id >=
// start_checkpoint_index
let mut checkpoints_iter =
checkpoints.elements_from_index(start_checkpoint_index);
for checkpoint in &mut checkpoints_iter {
match checkpoint.as_hash_map().get(address) {
Some(Recorded(AccountEntry::Cached(ref account, _))) => {
first_account = Some(account);
break;
}
Some(Recorded(AccountEntry::DbAbsent)) => {
return Ok(Some(U256::zero()));
}
Some(Unchanged) => {
kind = Some(ReturnKind::OriginalAt);
break;
}
// This key does not have a checkpoint entry.
None => {
kind = Some(ReturnKind::SameAsNext);
}
}
}
let require_further_iter = {
if first_account.is_none() {
false
} else {
match first_account
.unwrap()
.cached_value_at_checkpoint(key, start_checkpoint_index)
{
Some(Recorded(value)) => return Ok(Some(value)),
Some(Unchanged) => {
kind = Some(ReturnKind::OriginalAt);
false
}
None => true,
}
}
};
if require_further_iter {
assert!(first_account.is_some());
let mut account_changed = false;
let mut require_cache = true;
for checkpoint in checkpoints_iter {
if let Some(Recorded(AccountEntry::Cached(
ref account,
_,
))) = checkpoint.as_hash_map().get(address)
{
if !first_account.unwrap().eq_write_cache(account) {
account_changed = true;
break;
}
match account.cached_value_at_checkpoint(
key,
start_checkpoint_index,
) {
Some(Recorded(value)) => return Ok(Some(value)),
Some(Unchanged) => {
require_cache = false;
break;
}
None => {}
}
}
}
// in outer cache, the account may have a valid inner checkpoint
// if not breaked by further iter of outer checkpoints
if !account_changed && require_cache {
let outer_cache = self.cache.read();
if let Some(AccountEntry::Cached(ref account, _)) =
outer_cache.get(address)
{
if !first_account.unwrap().eq_write_cache(account) {
account_changed = true;
}
match account.cached_value_at_checkpoint(
key,
start_checkpoint_index,
) {
Some(Recorded(value)) => return Ok(Some(value)),
Some(Unchanged) => {
require_cache = false;
}
None => {}
}
}
}
// try to use cache
if account_changed || require_cache {
let first_cached_value =
first_account.unwrap().cached_value_at_cache(key);
if let Some(value) = first_cached_value {
return Ok(Some(value));
}
}
// do not use cache || fail to use cache
if first_account.unwrap().is_newly_created_contract() {
return Ok(Some(U256::zero()));
} else {
kind = Some(ReturnKind::OriginalAt);
}
}
kind.expect("start_checkpoint_index is checked to be below checkpoints_len; for loop above must have been executed at least once; it will either early return, or set the kind value to Some; qed")
};
match kind {
ReturnKind::SameAsNext => Ok(Some(self.storage_at(address, key)?)),
ReturnKind::OriginalAt => {
match self.db.get::<StorageValue>(
StorageKey::new_storage_key(&address.address, key.as_ref())
.with_space(address.space),
)? {
Some(storage_value) => Ok(Some(storage_value.value)),
None => Ok(Some(U256::zero())),
}
}
}
}
}