1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
// Copyright 2021 Conflux Foundation. All rights reserved.
// Conflux is free software and distributed under GNU General Public License.
// See http://www.gnu.org/licenses/
#![forbid(unsafe_code)]
//! This module provides algorithms for accessing and updating a Merkle
//! Accumulator structure persisted in a key-value store. Note that this doesn't
//! write to the storage directly, rather, it reads from it via the `HashReader`
//! trait and yields writes via an in memory `HashMap`.
//!
//! # Merkle Accumulator
//! Given an ever growing (append only) series of "leaf" hashes, we construct an
//! evolving Merkle Tree for which proofs of inclusion/exclusion of a leaf hash
//! at a leaf index in a snapshot of the tree (represented by root hash) can be
//! given.
//!
//! # Leaf Nodes
//! Leaf nodes carry hash values to be stored and proved. They are only appended
//! to the tree but never deleted or updated.
//!
//! # Internal Nodes
//! A non-leaf node carries the hash value derived from both its left and right
//! children.
//!
//! # Placeholder Nodes
//! To make sure each Leaf node has a Merkle Proof towards the root, placeholder
//! nodes are added so that along the route from a leaf to the root, each node
//! has a sibling. Placeholder nodes have the hash value
//! `ACCUMULATOR_PLACEHOLDER_HASH`
//!
//! A placeholder node can appear as either a Leaf node or a non-Leaf node, but
//! there is at most one placeholder leaf at any time.
//!
//! # Frozen Nodes & Non-frozen Nodes
//! As leaves are added to the tree, placeholder nodes get replaced by
//! non-placeholder nodes, and when a node has all its descendants being
//! non-placeholder, it becomes "Frozen" -- its hash value won't change again in
//! the event of new leaves being added. All leaves appended (not counting the
//! one possible placeholder leaf) are by definition Frozen.
//!
//! Other nodes, which have one or more placeholder descendants are Non-Frozen.
//! As new elements are appended to the accumulator the hash value of these
//! nodes will change.
//!
//! # Leaf Count
//! Given a count of the number of leaves in a Merkle Accumulator it is possible
//! to determine the shape of the accumulator -- which nodes are filled and
//! which nodes are placeholder nodes.
//!
//! Example:
//! Logical view of a Merkle Accumulator with 5 leaves:
//! ```text
//! Non-fzn
//! / \
//! / \
//! / \
//! Fzn2 Non-fzn
//! / \ / \
//! / \ / \
//! Fzn1 Fzn3 Non-fzn [Placeholder]
//! / \ / \ / \
//! L0 L1 L2 L3 L4 [Placeholder]
//! ```
//!
//! # Position and Physical Representation
//! As a Merkle Accumulator tree expands to the right and upwards, we number
//! newly frozen nodes monotonically. One way to do it is simply to use in-order
//! index of nodes, and this is what we do for the in-memory representation. We
//! call the stated numbers identifying nodes below simply "Position", and
//! unless otherwise stated, this is the in-order position.
//!
//! For writing to disk however, we write all the children of a node before the
//! parent. Thus for disk write order, it is more convenient to use the
//! post-order position as an index. And with that we can map a Merkle
//! Accumulator into a key-value storage: key is the post-order position of a
//! node, and the value is hash value it carries.
//!
//! We store only Frozen nodes, and generate non-Frozen nodes on the fly when
//! accessing the tree. This way, the physical representation of the tree is
//! append-only, i.e. once written to physical storage, nodes won't be either
//! modified or deleted.
//!
//! Here is what we persist for the logical tree in the above example:
//!
//! ```text
//! Fzn2(6)
//! / \
//! / \
//! Fzn1(2) Fzn3(5)
//! / \ / \
//! L0(0) L1(1) L2(3) L3(4) L4(7)
//! ```
//!
//! When the next leaf node is persisted, the physical representation will be:
//!
//! ```text
//! Fzn2(6)
//! / \
//! / \
//! Fzn1(2) Fzn3(5) Fzn4(9)
//! / \ / \ / \
//! L0(0) L1(1) L2(3) L3(4) L4(7) L5(8)
//! ```
//!
//! The numbering corresponds to the post-order traversal of the tree.
//!
//! To think in key-value pairs:
//! ```text
//! |<-key->|<--value-->|
//! | 0 | hash_L0 |
//! | 1 | hash_L1 |
//! | 2 | hash_Fzn1 |
//! | ... | ... |
//! ```
#[cfg(any(test, feature = "fuzzing"))]
pub mod test_helpers;
use anyhow::{ensure, format_err, Result};
use diem_crypto::hash::{
CryptoHash, CryptoHasher, HashValue, ACCUMULATOR_PLACEHOLDER_HASH,
};
use diem_types::proof::{
definition::{LeafCount, MAX_ACCUMULATOR_PROOF_DEPTH},
position::{FrozenSubTreeIterator, FrozenSubtreeSiblingIterator, Position},
AccumulatorConsistencyProof, AccumulatorProof, AccumulatorRangeProof,
MerkleTreeInternalNode,
};
use mirai_annotations::*;
use std::marker::PhantomData;
/// Defines the interface between `MerkleAccumulator` and underlying storage.
pub trait HashReader {
/// Return `HashValue` carried by the node at `Position`.
fn get(&self, position: Position) -> Result<HashValue>;
}
/// A `Node` in a `MerkleAccumulator` tree is a `HashValue` at a `Position`
type Node = (Position, HashValue);
/// In this live Merkle Accumulator algorithms.
pub struct MerkleAccumulator<R, H> {
reader: PhantomData<R>,
hasher: PhantomData<H>,
}
impl<R, H> MerkleAccumulator<R, H>
where
R: HashReader,
H: CryptoHasher,
{
/// Given an existing Merkle Accumulator (represented by
/// `num_existing_leaves` and a `reader` that is able to fetch all
/// existing frozen nodes), and a list of leaves to be appended, returns
/// the result root hash and new nodes to be frozen.
pub fn append(
reader: &R, num_existing_leaves: LeafCount, new_leaves: &[HashValue],
) -> Result<(HashValue, Vec<Node>)> {
MerkleAccumulatorView::<R, H>::new(reader, num_existing_leaves)
.append(new_leaves)
}
/// Get proof of inclusion of the leaf at `leaf_index` in this Merkle
/// Accumulator of `num_leaves` leaves in total. Siblings are read via
/// `reader` (or generated dynamically if they are non-frozen).
///
/// See [`diem_types::proof::AccumulatorProof`] for proof format.
pub fn get_proof(
reader: &R, num_leaves: LeafCount, leaf_index: u64,
) -> Result<AccumulatorProof<H>> {
MerkleAccumulatorView::<R, H>::new(reader, num_leaves)
.get_proof(leaf_index)
}
/// Gets a proof that shows the full accumulator is consistent with a
/// smaller accumulator.
///
/// See [`diem_types::proof::AccumulatorConsistencyProof`] for proof format.
pub fn get_consistency_proof(
reader: &R, full_acc_leaves: LeafCount, sub_acc_leaves: LeafCount,
) -> Result<AccumulatorConsistencyProof> {
MerkleAccumulatorView::<R, H>::new(reader, full_acc_leaves)
.get_consistency_proof(sub_acc_leaves)
}
/// Gets a proof that shows a range of leaves are part of the accumulator.
///
/// See [`diem_types::proof::AccumulatorRangeProof`] for proof format.
pub fn get_range_proof(
reader: &R, full_acc_leaves: LeafCount, first_leaf_index: Option<u64>,
num_leaves: LeafCount,
) -> Result<AccumulatorRangeProof<H>> {
MerkleAccumulatorView::<R, H>::new(reader, full_acc_leaves)
.get_range_proof(first_leaf_index, num_leaves)
}
/// See `get_range_proof`. This is the version of it that returns
/// `Position`s only.
pub fn get_range_proof_positions(
reader: &R, full_acc_leaves: LeafCount, first_leaf_index: Option<u64>,
num_leaves: LeafCount,
) -> Result<(Vec<Position>, Vec<Position>)> {
MerkleAccumulatorView::<R, H>::new(reader, full_acc_leaves)
.get_range_proof_positions(first_leaf_index, num_leaves)
}
/// From left to right, gets frozen subtree root hashes of the accumulator.
/// For example, if the accumulator has 5 leaves, `x` and `e` are
/// returned.
///
/// ```text
/// root
/// / \
/// / \
/// / \
/// x o
/// / \ / \
/// / \ / \
/// o o o placeholder
/// / \ / \ / \
/// a b c d e placeholder
/// ```
pub fn get_frozen_subtree_hashes(
reader: &R, num_leaves: LeafCount,
) -> Result<Vec<HashValue>> {
MerkleAccumulatorView::<R, H>::new(reader, num_leaves)
.get_frozen_subtree_hashes()
}
/// Get root hash at a specific version (hence num_leaves).
pub fn get_root_hash(
reader: &R, num_leaves: LeafCount,
) -> Result<HashValue> {
MerkleAccumulatorView::<R, H>::new(reader, num_leaves).get_root_hash()
}
}
/// Actual implementation of Merkle Accumulator algorithms, which carries the
/// `reader` and `num_leaves` on an instance for convenience
struct MerkleAccumulatorView<'a, R, H> {
reader: &'a R,
num_leaves: LeafCount,
hasher: PhantomData<H>,
}
impl<'a, R, H> MerkleAccumulatorView<'a, R, H>
where
R: HashReader,
H: CryptoHasher,
{
fn new(reader: &'a R, num_leaves: LeafCount) -> Self {
Self {
reader,
num_leaves,
hasher: PhantomData,
}
}
/// implementation for pub interface `MerkleAccumulator::append`
fn append(
&self, new_leaves: &[HashValue],
) -> Result<(HashValue, Vec<Node>)> {
// Deal with the case where new_leaves is empty
if new_leaves.is_empty() {
if self.num_leaves == 0 {
return Ok((*ACCUMULATOR_PLACEHOLDER_HASH, Vec::new()));
} else {
let root_hash = self.get_hash(
Position::root_from_leaf_count(self.num_leaves),
)?;
return Ok((root_hash, Vec::new()));
}
}
let num_new_leaves = new_leaves.len();
let last_new_leaf_count = self.num_leaves + num_new_leaves as LeafCount;
let root_level =
Position::root_level_from_leaf_count(last_new_leaf_count);
let mut to_freeze =
Vec::with_capacity(Self::max_to_freeze(num_new_leaves, root_level));
// Iterate over the new leaves, adding them to to_freeze and then adding
// any frozen parents when right children are encountered. This
// has the effect of creating frozen nodes in
// perfect post-order, which can be used as a strictly increasing append
// only index for the underlying storage.
//
// We will track newly created left siblings while iterating so we can
// pair them with their right sibling, if and when it becomes
// frozen. If the frozen left sibling is not created
// in this iteration, it must already exist in storage.
let mut left_siblings: Vec<(_, _)> = Vec::new();
for (leaf_offset, leaf) in new_leaves.iter().enumerate() {
let leaf_pos = Position::from_leaf_index(
self.num_leaves + leaf_offset as LeafCount,
);
let mut hash = *leaf;
to_freeze.push((leaf_pos, hash));
let mut pos = leaf_pos;
while pos.is_right_child() {
let sibling = pos.sibling();
hash = match left_siblings.pop() {
Some((x, left_hash)) => {
assert_eq!(x, sibling);
Self::hash_internal_node(left_hash, hash)
}
None => Self::hash_internal_node(
self.reader.get(sibling)?,
hash,
),
};
pos = pos.parent();
to_freeze.push((pos, hash));
}
// The node remaining must be a left child, possibly the root of a
// complete binary tree.
left_siblings.push((pos, hash));
}
// Now reconstruct the final root hash by walking up to root level and
// adding placeholder hash nodes as needed on the right, and
// left siblings that have either been newly created or read
// from storage.
let (mut pos, mut hash) =
left_siblings.pop().expect("Must have at least one node");
for _ in pos.level()..root_level as u32 {
hash = if pos.is_left_child() {
Self::hash_internal_node(hash, *ACCUMULATOR_PLACEHOLDER_HASH)
} else {
let sibling = pos.sibling();
match left_siblings.pop() {
Some((x, left_hash)) => {
assert_eq!(x, sibling);
Self::hash_internal_node(left_hash, hash)
}
None => Self::hash_internal_node(
self.reader.get(sibling)?,
hash,
),
}
};
pos = pos.parent();
}
assert!(left_siblings.is_empty());
Ok((hash, to_freeze))
}
/// upper bound of num of frozen nodes:
/// new leaves and resulting frozen internal nodes forming a complete
/// binary subtree num_new_leaves * 2 - 1 < num_new_leaves * 2
/// and the full route from root of that subtree to the accumulator root
/// turns frozen height - (log2(num_new_leaves) + 1) < height -
/// 1 = root_level
fn max_to_freeze(num_new_leaves: usize, root_level: u32) -> usize {
precondition!(root_level as usize <= MAX_ACCUMULATOR_PROOF_DEPTH);
precondition!(num_new_leaves < (usize::max_value() / 2));
precondition!(
num_new_leaves * 2 <= usize::max_value() - root_level as usize
);
num_new_leaves * 2 + root_level as usize
}
fn hash_internal_node(left: HashValue, right: HashValue) -> HashValue {
MerkleTreeInternalNode::<H>::new(left, right).hash()
}
fn rightmost_leaf_index(&self) -> u64 { (self.num_leaves - 1) as u64 }
fn get_hash(&self, position: Position) -> Result<HashValue> {
let idx = self.rightmost_leaf_index();
if position.is_placeholder(idx) {
Ok(*ACCUMULATOR_PLACEHOLDER_HASH)
} else if position.is_freezable(idx) {
self.reader.get(position)
} else {
// non-frozen non-placeholder node
Ok(Self::hash_internal_node(
self.get_hash(position.left_child())?,
self.get_hash(position.right_child())?,
))
}
}
fn get_hashes(&self, positions: &[Position]) -> Result<Vec<HashValue>> {
positions.iter().map(|p| self.get_hash(*p)).collect()
}
fn get_root_hash(&self) -> Result<HashValue> {
self.get_hash(Position::root_from_leaf_count(self.num_leaves))
}
/// implementation for pub interface `MerkleAccumulator::get_proof`
fn get_proof(&self, leaf_index: u64) -> Result<AccumulatorProof<H>> {
ensure!(
leaf_index < self.num_leaves as u64,
"invalid leaf_index {}, num_leaves {}",
leaf_index,
self.num_leaves
);
let siblings = self.get_siblings(leaf_index, |_p| true)?;
Ok(AccumulatorProof::new(siblings))
}
/// Implementation for public interface
/// `MerkleAccumulator::get_consistency_proof`.
fn get_consistency_proof(
&self, sub_acc_leaves: LeafCount,
) -> Result<AccumulatorConsistencyProof> {
ensure!(
sub_acc_leaves <= self.num_leaves,
"Can't get accumulator consistency proof for a version newer than the local version. \
Local next version: {}, asked next version: {}",
self.num_leaves,
sub_acc_leaves,
);
let subtrees =
FrozenSubtreeSiblingIterator::new(sub_acc_leaves, self.num_leaves)
.map(|p| self.reader.get(p))
.collect::<Result<Vec<_>>>()?;
Ok(AccumulatorConsistencyProof::new(subtrees))
}
/// Implementation for public interface
/// `MerkleAccumulator::get_range_proof`.
fn get_range_proof(
&self, first_leaf_index: Option<u64>, num_leaves: LeafCount,
) -> Result<AccumulatorRangeProof<H>> {
let (left_siblings, right_siblings) =
self.get_range_proof_positions(first_leaf_index, num_leaves)?;
Ok(AccumulatorRangeProof::new(
self.get_hashes(&left_siblings)?,
self.get_hashes(&right_siblings)?,
))
}
fn get_range_proof_positions(
&self, first_leaf_index: Option<u64>, num_leaves: LeafCount,
) -> Result<(Vec<Position>, Vec<Position>)> {
if first_leaf_index.is_none() {
ensure!(
num_leaves == 0,
"num_leaves is not zero while first_leaf_index is None.",
);
return Ok((Vec::new(), Vec::new()));
}
let first_leaf_index =
first_leaf_index.expect("first_leaf_index should not be None.");
ensure!(
num_leaves > 0,
"num_leaves is zero while first_leaf_index is not None.",
);
let last_leaf_index = first_leaf_index
.checked_add(num_leaves - 1)
.ok_or_else(|| format_err!("Requesting too many leaves."))?;
ensure!(
last_leaf_index < self.num_leaves as u64,
"Invalid last_leaf_index: {}, num_leaves: {}",
last_leaf_index,
self.num_leaves,
);
let left_siblings =
self.get_sibling_positions(first_leaf_index, |p| p.is_left_child());
let right_siblings =
self.get_sibling_positions(last_leaf_index, |p| p.is_right_child());
Ok((left_siblings, right_siblings))
}
fn get_siblings(
&self, leaf_index: u64, filter: impl Fn(Position) -> bool,
) -> Result<Vec<HashValue>> {
self.get_hashes(&self.get_sibling_positions(leaf_index, filter))
}
/// Helper function to get siblings on the path from the given leaf to the
/// root. An additional filter function can be applied to filter out
/// certain siblings.
fn get_sibling_positions(
&self, leaf_index: u64, filter: impl Fn(Position) -> bool,
) -> Vec<Position> {
let root_pos = Position::root_from_leaf_count(self.num_leaves);
Position::from_leaf_index(leaf_index)
.iter_ancestor_sibling()
.take(root_pos.level() as usize)
.filter(|p| filter(*p))
.collect()
}
/// Implementation for public interface
/// `MerkleAccumulator::get_frozen_subtree_hashes`.
fn get_frozen_subtree_hashes(&self) -> Result<Vec<HashValue>> {
FrozenSubTreeIterator::new(self.num_leaves)
.map(|p| self.reader.get(p))
.collect::<Result<Vec<_>>>()
}
}
#[cfg(test)]
mod tests;